Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224991256> ?p ?o ?g. }
- W4224991256 endingPage "110558" @default.
- W4224991256 startingPage "110558" @default.
- W4224991256 abstract "An artificial learning method for predicting top-of-line corrosion (TOLC) in oil/gas production from an existing oil field production data was presented, along with verifications and a few real-world applications. The developed algorithm was aimed to boost fundamental understanding of the day-to-day unit operations and periodic maintenance and inspection of oil/gas pipelines via a particular inline inspection technique (magnetic-flux-leakage measurements) and corrosion inhibitor applications. A recurrent neural network was utilized to establish a model for oil field production while a series of small neural networks representing the fundamental physics of TOLCs were included. The relevant physical models are those relating to (i) electrochemistry of corrosion mechanisms, (ii) gas–liquid phase flows and atomizations, and (iii) the condensation rates at the top of the lines. By incorporating these networks into the operation data, the developed learning algorithm gives accurate TOLC prediction for the complex oil field structures. The results show that the estimation models based on the physics-guided artificial neural network present the root-mean-square error within 10%. The developed software also offers insights into the essential parameters for the better prevention of the TOLC in pipelines." @default.
- W4224991256 created "2022-04-28" @default.
- W4224991256 creator A5000373964 @default.
- W4224991256 creator A5009720423 @default.
- W4224991256 creator A5019136868 @default.
- W4224991256 creator A5019787285 @default.
- W4224991256 creator A5025334420 @default.
- W4224991256 creator A5044070973 @default.
- W4224991256 creator A5057511320 @default.
- W4224991256 creator A5087758358 @default.
- W4224991256 date "2022-08-01" @default.
- W4224991256 modified "2023-09-26" @default.
- W4224991256 title "Top-of-line corrosion via physics-guided machine learning: A methodology integrating field data with theoretical models" @default.
- W4224991256 cites W1557805631 @default.
- W4224991256 cites W1867841739 @default.
- W4224991256 cites W1970427916 @default.
- W4224991256 cites W1988518769 @default.
- W4224991256 cites W1990456773 @default.
- W4224991256 cites W1995607517 @default.
- W4224991256 cites W2043080543 @default.
- W4224991256 cites W2048490368 @default.
- W4224991256 cites W2048977948 @default.
- W4224991256 cites W2053279070 @default.
- W4224991256 cites W2059383203 @default.
- W4224991256 cites W2070986380 @default.
- W4224991256 cites W2076422580 @default.
- W4224991256 cites W2085692971 @default.
- W4224991256 cites W2089405620 @default.
- W4224991256 cites W2095240188 @default.
- W4224991256 cites W2127502481 @default.
- W4224991256 cites W2142323005 @default.
- W4224991256 cites W2145376462 @default.
- W4224991256 cites W2155945533 @default.
- W4224991256 cites W2159952574 @default.
- W4224991256 cites W2264565983 @default.
- W4224991256 cites W2302119750 @default.
- W4224991256 cites W2342249984 @default.
- W4224991256 cites W2734256217 @default.
- W4224991256 cites W2800380983 @default.
- W4224991256 cites W2887915696 @default.
- W4224991256 cites W2904649421 @default.
- W4224991256 cites W2909406668 @default.
- W4224991256 cites W2945421839 @default.
- W4224991256 cites W2945808641 @default.
- W4224991256 cites W2974287515 @default.
- W4224991256 cites W2990750902 @default.
- W4224991256 cites W3087457625 @default.
- W4224991256 cites W3098678593 @default.
- W4224991256 cites W3099878876 @default.
- W4224991256 cites W3112018172 @default.
- W4224991256 cites W3133456497 @default.
- W4224991256 cites W3199089501 @default.
- W4224991256 cites W3213345463 @default.
- W4224991256 doi "https://doi.org/10.1016/j.petrol.2022.110558" @default.
- W4224991256 hasPublicationYear "2022" @default.
- W4224991256 type Work @default.
- W4224991256 citedByCount "2" @default.
- W4224991256 countsByYear W42249912562023 @default.
- W4224991256 crossrefType "journal-article" @default.
- W4224991256 hasAuthorship W4224991256A5000373964 @default.
- W4224991256 hasAuthorship W4224991256A5009720423 @default.
- W4224991256 hasAuthorship W4224991256A5019136868 @default.
- W4224991256 hasAuthorship W4224991256A5019787285 @default.
- W4224991256 hasAuthorship W4224991256A5025334420 @default.
- W4224991256 hasAuthorship W4224991256A5044070973 @default.
- W4224991256 hasAuthorship W4224991256A5057511320 @default.
- W4224991256 hasAuthorship W4224991256A5087758358 @default.
- W4224991256 hasConcept C119857082 @default.
- W4224991256 hasConcept C127413603 @default.
- W4224991256 hasConcept C154945302 @default.
- W4224991256 hasConcept C16389437 @default.
- W4224991256 hasConcept C175309249 @default.
- W4224991256 hasConcept C191897082 @default.
- W4224991256 hasConcept C192562407 @default.
- W4224991256 hasConcept C202444582 @default.
- W4224991256 hasConcept C20625102 @default.
- W4224991256 hasConcept C20892748 @default.
- W4224991256 hasConcept C2776364302 @default.
- W4224991256 hasConcept C33923547 @default.
- W4224991256 hasConcept C41008148 @default.
- W4224991256 hasConcept C50644808 @default.
- W4224991256 hasConcept C78519656 @default.
- W4224991256 hasConcept C78762247 @default.
- W4224991256 hasConcept C9652623 @default.
- W4224991256 hasConceptScore W4224991256C119857082 @default.
- W4224991256 hasConceptScore W4224991256C127413603 @default.
- W4224991256 hasConceptScore W4224991256C154945302 @default.
- W4224991256 hasConceptScore W4224991256C16389437 @default.
- W4224991256 hasConceptScore W4224991256C175309249 @default.
- W4224991256 hasConceptScore W4224991256C191897082 @default.
- W4224991256 hasConceptScore W4224991256C192562407 @default.
- W4224991256 hasConceptScore W4224991256C202444582 @default.
- W4224991256 hasConceptScore W4224991256C20625102 @default.
- W4224991256 hasConceptScore W4224991256C20892748 @default.
- W4224991256 hasConceptScore W4224991256C2776364302 @default.
- W4224991256 hasConceptScore W4224991256C33923547 @default.
- W4224991256 hasConceptScore W4224991256C41008148 @default.
- W4224991256 hasConceptScore W4224991256C50644808 @default.