Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224992743> ?p ?o ?g. }
- W4224992743 abstract "We demonstrate that recent natural language processing (NLP) techniques introduce a new paradigm of vocabulary learning that benefits from both micro and usage-based learning by generating and presenting the usages of foreign words based on the learner’s context. Then, without allocating dedicated time for studying, the user can become familiarized with how the words are used by seeing the example usages during daily activities, such as Web browsing. To achieve this, we introduce VocabEncounter, a vocabulary-learning system that suitably encapsulates the given words into materials the user is reading in near real time by leveraging recent NLP techniques. After confirming the system’s human-comparable quality of generating translated phrases by involving crowdworkers, we conducted a series of user studies, which demonstrated its effectiveness on learning vocabulary and its favorable experiences. Our work shows how NLP-based generation techniques can transform our daily activities into a field for vocabulary learning." @default.
- W4224992743 created "2022-04-28" @default.
- W4224992743 creator A5044514558 @default.
- W4224992743 creator A5051687457 @default.
- W4224992743 creator A5053021287 @default.
- W4224992743 date "2022-04-27" @default.
- W4224992743 modified "2023-09-28" @default.
- W4224992743 title "VocabEncounter: NMT-powered Vocabulary Learning by Presenting Computer-Generated Usages of Foreign Words into Users’ Daily Lives" @default.
- W4224992743 cites W1974641101 @default.
- W4224992743 cites W1980987472 @default.
- W4224992743 cites W1987206778 @default.
- W4224992743 cites W2001190238 @default.
- W4224992743 cites W2002202341 @default.
- W4224992743 cites W2007179419 @default.
- W4224992743 cites W2023394508 @default.
- W4224992743 cites W2037737640 @default.
- W4224992743 cites W2050637714 @default.
- W4224992743 cites W2072730187 @default.
- W4224992743 cites W2090373925 @default.
- W4224992743 cites W2095745759 @default.
- W4224992743 cites W2102908405 @default.
- W4224992743 cites W2108602246 @default.
- W4224992743 cites W2117130368 @default.
- W4224992743 cites W2117511735 @default.
- W4224992743 cites W2157092210 @default.
- W4224992743 cites W2160482209 @default.
- W4224992743 cites W2206052695 @default.
- W4224992743 cites W2409578015 @default.
- W4224992743 cites W2600545732 @default.
- W4224992743 cites W2610519238 @default.
- W4224992743 cites W2611961839 @default.
- W4224992743 cites W2740065698 @default.
- W4224992743 cites W2752490344 @default.
- W4224992743 cites W2791433484 @default.
- W4224992743 cites W2795866715 @default.
- W4224992743 cites W2891177506 @default.
- W4224992743 cites W2913125520 @default.
- W4224992743 cites W2916904544 @default.
- W4224992743 cites W2933138175 @default.
- W4224992743 cites W2945735543 @default.
- W4224992743 cites W2949682894 @default.
- W4224992743 cites W2951770285 @default.
- W4224992743 cites W2963352809 @default.
- W4224992743 cites W2963850840 @default.
- W4224992743 cites W2963877622 @default.
- W4224992743 cites W2964029788 @default.
- W4224992743 cites W2964532449 @default.
- W4224992743 cites W2970295111 @default.
- W4224992743 cites W2970641574 @default.
- W4224992743 cites W2998704965 @default.
- W4224992743 cites W3003809993 @default.
- W4224992743 cites W3010805239 @default.
- W4224992743 cites W3032769455 @default.
- W4224992743 cites W3044087898 @default.
- W4224992743 cites W3100806282 @default.
- W4224992743 cites W3104723404 @default.
- W4224992743 doi "https://doi.org/10.1145/3491102.3501839" @default.
- W4224992743 hasPublicationYear "2022" @default.
- W4224992743 type Work @default.
- W4224992743 citedByCount "5" @default.
- W4224992743 countsByYear W42249927432022 @default.
- W4224992743 countsByYear W42249927432023 @default.
- W4224992743 crossrefType "proceedings-article" @default.
- W4224992743 hasAuthorship W4224992743A5044514558 @default.
- W4224992743 hasAuthorship W4224992743A5051687457 @default.
- W4224992743 hasAuthorship W4224992743A5053021287 @default.
- W4224992743 hasBestOaLocation W42249927431 @default.
- W4224992743 hasConcept C114010052 @default.
- W4224992743 hasConcept C138885662 @default.
- W4224992743 hasConcept C151730666 @default.
- W4224992743 hasConcept C154945302 @default.
- W4224992743 hasConcept C204321447 @default.
- W4224992743 hasConcept C2777601683 @default.
- W4224992743 hasConcept C2779343474 @default.
- W4224992743 hasConcept C2984601542 @default.
- W4224992743 hasConcept C41008148 @default.
- W4224992743 hasConcept C41895202 @default.
- W4224992743 hasConcept C49774154 @default.
- W4224992743 hasConcept C554936623 @default.
- W4224992743 hasConcept C86803240 @default.
- W4224992743 hasConceptScore W4224992743C114010052 @default.
- W4224992743 hasConceptScore W4224992743C138885662 @default.
- W4224992743 hasConceptScore W4224992743C151730666 @default.
- W4224992743 hasConceptScore W4224992743C154945302 @default.
- W4224992743 hasConceptScore W4224992743C204321447 @default.
- W4224992743 hasConceptScore W4224992743C2777601683 @default.
- W4224992743 hasConceptScore W4224992743C2779343474 @default.
- W4224992743 hasConceptScore W4224992743C2984601542 @default.
- W4224992743 hasConceptScore W4224992743C41008148 @default.
- W4224992743 hasConceptScore W4224992743C41895202 @default.
- W4224992743 hasConceptScore W4224992743C49774154 @default.
- W4224992743 hasConceptScore W4224992743C554936623 @default.
- W4224992743 hasConceptScore W4224992743C86803240 @default.
- W4224992743 hasFunder F4320334764 @default.
- W4224992743 hasFunder F4320334789 @default.
- W4224992743 hasLocation W42249927431 @default.
- W4224992743 hasOpenAccess W4224992743 @default.
- W4224992743 hasPrimaryLocation W42249927431 @default.
- W4224992743 hasRelatedWork W2110700584 @default.
- W4224992743 hasRelatedWork W2151633926 @default.