Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224995026> ?p ?o ?g. }
- W4224995026 abstract "In procedural-based medicine, the technical ability can be a critical determinant of patient outcomes. Psychomotor performance occurs in real-time, hence a continuous assessment is necessary to provide action-oriented feedback and error avoidance guidance. We outline a deep learning application, the Intelligent Continuous Expertise Monitoring System (ICEMS), to assess surgical bimanual performance at 0.2-s intervals. A long-short term memory network was built using neurosurgeon and student performance in 156 virtually simulated tumor resection tasks. Algorithm predictive ability was tested separately on 144 procedures by scoring the performance of neurosurgical trainees who are at different training stages. The ICEMS successfully differentiated between neurosurgeons, senior trainees, junior trainees, and students. Trainee average performance score correlated with the year of training in neurosurgery. Furthermore, coaching and risk assessment for critical metrics were demonstrated. This work presents a comprehensive technical skill monitoring system with predictive validation throughout surgical residency training, with the ability to detect errors." @default.
- W4224995026 created "2022-04-28" @default.
- W4224995026 creator A5010050464 @default.
- W4224995026 creator A5023746430 @default.
- W4224995026 creator A5042639802 @default.
- W4224995026 creator A5044299556 @default.
- W4224995026 creator A5050832111 @default.
- W4224995026 creator A5051154946 @default.
- W4224995026 creator A5068239323 @default.
- W4224995026 creator A5073588458 @default.
- W4224995026 creator A5078232473 @default.
- W4224995026 creator A5079333738 @default.
- W4224995026 creator A5081584166 @default.
- W4224995026 creator A5091256076 @default.
- W4224995026 date "2022-04-26" @default.
- W4224995026 modified "2023-10-17" @default.
- W4224995026 title "Continuous monitoring of surgical bimanual expertise using deep neural networks in virtual reality simulation" @default.
- W4224995026 cites W1965053430 @default.
- W4224995026 cites W1986805838 @default.
- W4224995026 cites W1994682257 @default.
- W4224995026 cites W1994731196 @default.
- W4224995026 cites W2005426419 @default.
- W4224995026 cites W2006404518 @default.
- W4224995026 cites W2018990093 @default.
- W4224995026 cites W2023276160 @default.
- W4224995026 cites W2030680667 @default.
- W4224995026 cites W2056300110 @default.
- W4224995026 cites W2063026846 @default.
- W4224995026 cites W2064675550 @default.
- W4224995026 cites W2075057776 @default.
- W4224995026 cites W2077516198 @default.
- W4224995026 cites W2116810060 @default.
- W4224995026 cites W2122612736 @default.
- W4224995026 cites W2128351638 @default.
- W4224995026 cites W2144269400 @default.
- W4224995026 cites W2161586677 @default.
- W4224995026 cites W2294352517 @default.
- W4224995026 cites W2346113364 @default.
- W4224995026 cites W2464298857 @default.
- W4224995026 cites W2470043345 @default.
- W4224995026 cites W2478186602 @default.
- W4224995026 cites W2559394418 @default.
- W4224995026 cites W2726360404 @default.
- W4224995026 cites W2753008889 @default.
- W4224995026 cites W2885811470 @default.
- W4224995026 cites W2888774151 @default.
- W4224995026 cites W2897785922 @default.
- W4224995026 cites W2919115771 @default.
- W4224995026 cites W2945856095 @default.
- W4224995026 cites W2951405082 @default.
- W4224995026 cites W2966447025 @default.
- W4224995026 cites W2974089311 @default.
- W4224995026 cites W2995336252 @default.
- W4224995026 cites W3007803772 @default.
- W4224995026 cites W3014473050 @default.
- W4224995026 cites W3015971114 @default.
- W4224995026 cites W3016321866 @default.
- W4224995026 cites W3034677259 @default.
- W4224995026 cites W3047467795 @default.
- W4224995026 cites W3061235327 @default.
- W4224995026 cites W3086322215 @default.
- W4224995026 cites W3113444398 @default.
- W4224995026 cites W3118449295 @default.
- W4224995026 cites W3124295941 @default.
- W4224995026 cites W3127259696 @default.
- W4224995026 cites W3130716407 @default.
- W4224995026 cites W3158273026 @default.
- W4224995026 cites W3187314735 @default.
- W4224995026 cites W4212922284 @default.
- W4224995026 cites W4235331902 @default.
- W4224995026 cites W4239301040 @default.
- W4224995026 cites W4292528167 @default.
- W4224995026 cites W4299627282 @default.
- W4224995026 doi "https://doi.org/10.1038/s41746-022-00596-8" @default.
- W4224995026 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35473961" @default.
- W4224995026 hasPublicationYear "2022" @default.
- W4224995026 type Work @default.
- W4224995026 citedByCount "8" @default.
- W4224995026 countsByYear W42249950262023 @default.
- W4224995026 crossrefType "journal-article" @default.
- W4224995026 hasAuthorship W4224995026A5010050464 @default.
- W4224995026 hasAuthorship W4224995026A5023746430 @default.
- W4224995026 hasAuthorship W4224995026A5042639802 @default.
- W4224995026 hasAuthorship W4224995026A5044299556 @default.
- W4224995026 hasAuthorship W4224995026A5050832111 @default.
- W4224995026 hasAuthorship W4224995026A5051154946 @default.
- W4224995026 hasAuthorship W4224995026A5068239323 @default.
- W4224995026 hasAuthorship W4224995026A5073588458 @default.
- W4224995026 hasAuthorship W4224995026A5078232473 @default.
- W4224995026 hasAuthorship W4224995026A5079333738 @default.
- W4224995026 hasAuthorship W4224995026A5081584166 @default.
- W4224995026 hasAuthorship W4224995026A5091256076 @default.
- W4224995026 hasBestOaLocation W42249950261 @default.
- W4224995026 hasConcept C119857082 @default.
- W4224995026 hasConcept C12770488 @default.
- W4224995026 hasConcept C141071460 @default.
- W4224995026 hasConcept C154945302 @default.
- W4224995026 hasConcept C15744967 @default.
- W4224995026 hasConcept C164953862 @default.
- W4224995026 hasConcept C169760540 @default.