Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224995088> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4224995088 endingPage "110573" @default.
- W4224995088 startingPage "110573" @default.
- W4224995088 abstract "Predicting and extrapolating the permeability between wells to obtain the 3D distribution for the geological model, is a crucial and challenging task in reservoir simulation. Permeability is influenced by both digenetic characteristics and depositional factors like sorting and grain size. Hence, a reliable model should consider these characteristics for prediction of permeability. Grouping the rocks into different hydraulic flow units (HFU) or discrete rock types (DRT), improves the identity of the reservoir characteristics and provide a more accurate permeability prediction. Multi variable regression models and Artificial Neural Networks (ANN) were applied in this study to correlate core permeability and porosity with well logs to predict permeability logs. It was observed that the accuracy of the models diminished in heterogeneous reservoirs, where there is a wide permeability distribution. In this study, we are presenting a novel approach to predict permeability in heterogeneous oil and gas reservoirs. In this method the core permeability and porosity data are categorized using the concept of DRT and the probability density functions are used to investigate the relationships between the logs and DRT groups. The ANN model is applied to correlate the core derived flow zone indicator (FZI) with wire-line logging data with a single key well to predict K-logs. In this approach one single well, which contains all DRT groups is considered as a key well to develop and train the ANN model. It was observed that ANN model exhibits better prediction performance in heterogeneous reservoirs when it is developed and trained on single well data containing all DRT groups. This approach can capture heterogeneity in the reservoirs where it has been applied successfully to predict permeability in an actual heterogeneous carbonate gas reservoir." @default.
- W4224995088 created "2022-04-28" @default.
- W4224995088 creator A5001007696 @default.
- W4224995088 creator A5010372609 @default.
- W4224995088 creator A5058198264 @default.
- W4224995088 creator A5064660403 @default.
- W4224995088 creator A5070092904 @default.
- W4224995088 date "2022-07-01" @default.
- W4224995088 modified "2023-10-13" @default.
- W4224995088 title "A novel approach by integrating the core derived FZI and well logging data into artificial neural network model for improved permeability prediction in a heterogeneous gas reservoir" @default.
- W4224995088 cites W1973110194 @default.
- W4224995088 cites W1980046581 @default.
- W4224995088 cites W2017979142 @default.
- W4224995088 cites W2030328974 @default.
- W4224995088 cites W2075089536 @default.
- W4224995088 cites W2078792643 @default.
- W4224995088 cites W2130301492 @default.
- W4224995088 cites W2172595117 @default.
- W4224995088 cites W2558024369 @default.
- W4224995088 cites W2901882553 @default.
- W4224995088 cites W2981835090 @default.
- W4224995088 cites W3112411052 @default.
- W4224995088 cites W3121500821 @default.
- W4224995088 cites W3194686336 @default.
- W4224995088 cites W4205814629 @default.
- W4224995088 cites W4220794821 @default.
- W4224995088 doi "https://doi.org/10.1016/j.petrol.2022.110573" @default.
- W4224995088 hasPublicationYear "2022" @default.
- W4224995088 type Work @default.
- W4224995088 citedByCount "3" @default.
- W4224995088 countsByYear W42249950882022 @default.
- W4224995088 countsByYear W42249950882023 @default.
- W4224995088 crossrefType "journal-article" @default.
- W4224995088 hasAuthorship W4224995088A5001007696 @default.
- W4224995088 hasAuthorship W4224995088A5010372609 @default.
- W4224995088 hasAuthorship W4224995088A5058198264 @default.
- W4224995088 hasAuthorship W4224995088A5064660403 @default.
- W4224995088 hasAuthorship W4224995088A5070092904 @default.
- W4224995088 hasConcept C113215200 @default.
- W4224995088 hasConcept C120882062 @default.
- W4224995088 hasConcept C127313418 @default.
- W4224995088 hasConcept C14641988 @default.
- W4224995088 hasConcept C154945302 @default.
- W4224995088 hasConcept C187320778 @default.
- W4224995088 hasConcept C2778668878 @default.
- W4224995088 hasConcept C35817400 @default.
- W4224995088 hasConcept C41008148 @default.
- W4224995088 hasConcept C41625074 @default.
- W4224995088 hasConcept C46293882 @default.
- W4224995088 hasConcept C50644808 @default.
- W4224995088 hasConcept C54355233 @default.
- W4224995088 hasConcept C6648577 @default.
- W4224995088 hasConcept C78762247 @default.
- W4224995088 hasConcept C86803240 @default.
- W4224995088 hasConceptScore W4224995088C113215200 @default.
- W4224995088 hasConceptScore W4224995088C120882062 @default.
- W4224995088 hasConceptScore W4224995088C127313418 @default.
- W4224995088 hasConceptScore W4224995088C14641988 @default.
- W4224995088 hasConceptScore W4224995088C154945302 @default.
- W4224995088 hasConceptScore W4224995088C187320778 @default.
- W4224995088 hasConceptScore W4224995088C2778668878 @default.
- W4224995088 hasConceptScore W4224995088C35817400 @default.
- W4224995088 hasConceptScore W4224995088C41008148 @default.
- W4224995088 hasConceptScore W4224995088C41625074 @default.
- W4224995088 hasConceptScore W4224995088C46293882 @default.
- W4224995088 hasConceptScore W4224995088C50644808 @default.
- W4224995088 hasConceptScore W4224995088C54355233 @default.
- W4224995088 hasConceptScore W4224995088C6648577 @default.
- W4224995088 hasConceptScore W4224995088C78762247 @default.
- W4224995088 hasConceptScore W4224995088C86803240 @default.
- W4224995088 hasLocation W42249950881 @default.
- W4224995088 hasOpenAccess W4224995088 @default.
- W4224995088 hasPrimaryLocation W42249950881 @default.
- W4224995088 hasRelatedWork W1575337584 @default.
- W4224995088 hasRelatedWork W2028387968 @default.
- W4224995088 hasRelatedWork W2107465851 @default.
- W4224995088 hasRelatedWork W2155387133 @default.
- W4224995088 hasRelatedWork W2184250192 @default.
- W4224995088 hasRelatedWork W2748919014 @default.
- W4224995088 hasRelatedWork W275917539 @default.
- W4224995088 hasRelatedWork W3021763247 @default.
- W4224995088 hasRelatedWork W3035681571 @default.
- W4224995088 hasRelatedWork W4313904674 @default.
- W4224995088 hasVolume "214" @default.
- W4224995088 isParatext "false" @default.
- W4224995088 isRetracted "false" @default.
- W4224995088 workType "article" @default.