Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224996688> ?p ?o ?g. }
- W4224996688 endingPage "118518" @default.
- W4224996688 startingPage "118518" @default.
- W4224996688 abstract "An in-situ monitoring of water quality (suspended sediment concentration, SSC) and concurrent hydrodynamics was conducted in the subaqueous Yellow River Delta in China. Empirical mode decomposition and spectral analysis on the SSC time series reveal the different periodicities of each physical mechanism that contribute to the SSC variations. Based on this physical understanding, the decomposed SSC time series were trained separately with a newly-proposed augmented lncosh ridge regression, in which (1) a lncosh function was incorporated in traditional ridge regression for handling outliers in original data, and (2) the temporal auto-correlation in the decomposed SSC series was used for augmented regression. Finally, the trained sub-series were added up as the final prediction. The advantages of this decomposition-ensemble framework is that it depends on SSC only, superior to the normal process-based models which need the concurrent hydrodynamics for estimating bed shear stress. This will not only reduce the measurement uncertainties of the input when training the data-driven model, but also save the prediction cost as no other parameters than SSC need to be measured and input for running the model. The framework realized 6-hour-ahead high-accuracy forecasting with mean relative errors of 5.80-9.44% in the present case study. The proposed framework can be extended to forecast any signal that is superposed by components with various timescales (periodicities) which is common in nature." @default.
- W4224996688 created "2022-04-28" @default.
- W4224996688 creator A5044575556 @default.
- W4224996688 creator A5059746840 @default.
- W4224996688 creator A5070113044 @default.
- W4224996688 creator A5073924559 @default.
- W4224996688 creator A5090789379 @default.
- W4224996688 date "2022-06-01" @default.
- W4224996688 modified "2023-10-18" @default.
- W4224996688 title "A physics-informed statistical learning framework for forecasting local suspended sediment concentrations in marine environment" @default.
- W4224996688 cites W1652657036 @default.
- W4224996688 cites W1976374322 @default.
- W4224996688 cites W1976963256 @default.
- W4224996688 cites W1979573625 @default.
- W4224996688 cites W2007221293 @default.
- W4224996688 cites W2014725748 @default.
- W4224996688 cites W2016853530 @default.
- W4224996688 cites W2030844038 @default.
- W4224996688 cites W2035659642 @default.
- W4224996688 cites W2042130715 @default.
- W4224996688 cites W2049234659 @default.
- W4224996688 cites W2064431944 @default.
- W4224996688 cites W2065742895 @default.
- W4224996688 cites W2069627663 @default.
- W4224996688 cites W2079334434 @default.
- W4224996688 cites W2080964997 @default.
- W4224996688 cites W2082156006 @default.
- W4224996688 cites W2083531741 @default.
- W4224996688 cites W2086576008 @default.
- W4224996688 cites W2094635587 @default.
- W4224996688 cites W2106693625 @default.
- W4224996688 cites W2107558893 @default.
- W4224996688 cites W2116512828 @default.
- W4224996688 cites W2146844255 @default.
- W4224996688 cites W2151571212 @default.
- W4224996688 cites W2160097539 @default.
- W4224996688 cites W2230465200 @default.
- W4224996688 cites W2284731747 @default.
- W4224996688 cites W2293298207 @default.
- W4224996688 cites W2586766860 @default.
- W4224996688 cites W2608079944 @default.
- W4224996688 cites W2703031421 @default.
- W4224996688 cites W2732779023 @default.
- W4224996688 cites W2802437313 @default.
- W4224996688 cites W2803827895 @default.
- W4224996688 cites W2809501548 @default.
- W4224996688 cites W2883449252 @default.
- W4224996688 cites W2891554587 @default.
- W4224996688 cites W2913788362 @default.
- W4224996688 cites W2955470352 @default.
- W4224996688 cites W2963098640 @default.
- W4224996688 cites W3035215406 @default.
- W4224996688 cites W3041165043 @default.
- W4224996688 cites W3041896213 @default.
- W4224996688 cites W3042986553 @default.
- W4224996688 cites W3048385052 @default.
- W4224996688 cites W3082958479 @default.
- W4224996688 cites W3112792461 @default.
- W4224996688 cites W3117841869 @default.
- W4224996688 cites W3118132348 @default.
- W4224996688 cites W3126241812 @default.
- W4224996688 cites W3128487972 @default.
- W4224996688 cites W3131007112 @default.
- W4224996688 cites W3132189050 @default.
- W4224996688 cites W3137399967 @default.
- W4224996688 cites W3138871166 @default.
- W4224996688 cites W3155441579 @default.
- W4224996688 cites W4206318851 @default.
- W4224996688 doi "https://doi.org/10.1016/j.watres.2022.118518" @default.
- W4224996688 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35526355" @default.
- W4224996688 hasPublicationYear "2022" @default.
- W4224996688 type Work @default.
- W4224996688 citedByCount "12" @default.
- W4224996688 countsByYear W42249966882022 @default.
- W4224996688 countsByYear W42249966882023 @default.
- W4224996688 crossrefType "journal-article" @default.
- W4224996688 hasAuthorship W4224996688A5044575556 @default.
- W4224996688 hasAuthorship W4224996688A5059746840 @default.
- W4224996688 hasAuthorship W4224996688A5070113044 @default.
- W4224996688 hasAuthorship W4224996688A5073924559 @default.
- W4224996688 hasAuthorship W4224996688A5090789379 @default.
- W4224996688 hasBestOaLocation W42249966882 @default.
- W4224996688 hasConcept C105795698 @default.
- W4224996688 hasConcept C119857082 @default.
- W4224996688 hasConcept C124101348 @default.
- W4224996688 hasConcept C127313418 @default.
- W4224996688 hasConcept C14036430 @default.
- W4224996688 hasConcept C143724316 @default.
- W4224996688 hasConcept C151730666 @default.
- W4224996688 hasConcept C152877465 @default.
- W4224996688 hasConcept C154945302 @default.
- W4224996688 hasConcept C32277403 @default.
- W4224996688 hasConcept C33923547 @default.
- W4224996688 hasConcept C41008148 @default.
- W4224996688 hasConcept C78458016 @default.
- W4224996688 hasConcept C79337645 @default.
- W4224996688 hasConcept C83546350 @default.
- W4224996688 hasConcept C86803240 @default.