Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224996817> ?p ?o ?g. }
- W4224996817 endingPage "1461" @default.
- W4224996817 startingPage "1461" @default.
- W4224996817 abstract "This paper is devoted to the wavelet Galerkin method to solve the Fractional Riccati equation. To this end, biorthogonal Hermite cubic Spline scaling bases and their properties are introduced, and the fractional integral is represented based on these bases as an operational matrix. Firstly, we obtain the Volterra integral equation with a weakly singular kernel corresponding to the desired equation. Then, using the operational matrix of fractional integration and the Galerkin method, the corresponding integral equation is reduced to a system of algebraic equations. Solving this system via Newton’s iterative method gives the unknown solution. The convergence analysis is investigated and shows that the convergence rate is O(2−s). To demonstrate the efficiency and accuracy of the method, some numerical simulations are provided." @default.
- W4224996817 created "2022-04-28" @default.
- W4224996817 creator A5035637270 @default.
- W4224996817 creator A5051367541 @default.
- W4224996817 date "2022-04-27" @default.
- W4224996817 modified "2023-09-26" @default.
- W4224996817 title "A Biorthogonal Hermite Cubic Spline Galerkin Method for Solving Fractional Riccati Equation" @default.
- W4224996817 cites W1974077123 @default.
- W4224996817 cites W1990591838 @default.
- W4224996817 cites W2009756970 @default.
- W4224996817 cites W2011797178 @default.
- W4224996817 cites W2031117606 @default.
- W4224996817 cites W2058191269 @default.
- W4224996817 cites W2074715049 @default.
- W4224996817 cites W2110245394 @default.
- W4224996817 cites W2111261932 @default.
- W4224996817 cites W2135594087 @default.
- W4224996817 cites W2140153041 @default.
- W4224996817 cites W2389984057 @default.
- W4224996817 cites W2479030702 @default.
- W4224996817 cites W2486983496 @default.
- W4224996817 cites W2766195651 @default.
- W4224996817 cites W2890102509 @default.
- W4224996817 cites W2937107277 @default.
- W4224996817 cites W3033967640 @default.
- W4224996817 cites W3125356203 @default.
- W4224996817 cites W3157965336 @default.
- W4224996817 cites W3174465143 @default.
- W4224996817 cites W3215220336 @default.
- W4224996817 cites W4223490408 @default.
- W4224996817 doi "https://doi.org/10.3390/math10091461" @default.
- W4224996817 hasPublicationYear "2022" @default.
- W4224996817 type Work @default.
- W4224996817 citedByCount "3" @default.
- W4224996817 countsByYear W42249968172022 @default.
- W4224996817 countsByYear W42249968172023 @default.
- W4224996817 crossrefType "journal-article" @default.
- W4224996817 hasAuthorship W4224996817A5035637270 @default.
- W4224996817 hasAuthorship W4224996817A5051367541 @default.
- W4224996817 hasBestOaLocation W42249968171 @default.
- W4224996817 hasConcept C105795698 @default.
- W4224996817 hasConcept C107457265 @default.
- W4224996817 hasConcept C119599485 @default.
- W4224996817 hasConcept C121332964 @default.
- W4224996817 hasConcept C127162648 @default.
- W4224996817 hasConcept C127413603 @default.
- W4224996817 hasConcept C134306372 @default.
- W4224996817 hasConcept C135628077 @default.
- W4224996817 hasConcept C13847129 @default.
- W4224996817 hasConcept C154945302 @default.
- W4224996817 hasConcept C158453530 @default.
- W4224996817 hasConcept C158622935 @default.
- W4224996817 hasConcept C186763157 @default.
- W4224996817 hasConcept C186899397 @default.
- W4224996817 hasConcept C196216189 @default.
- W4224996817 hasConcept C201362023 @default.
- W4224996817 hasConcept C205203396 @default.
- W4224996817 hasConcept C23917780 @default.
- W4224996817 hasConcept C27016315 @default.
- W4224996817 hasConcept C28826006 @default.
- W4224996817 hasConcept C31447003 @default.
- W4224996817 hasConcept C33923547 @default.
- W4224996817 hasConcept C41008148 @default.
- W4224996817 hasConcept C45473103 @default.
- W4224996817 hasConcept C47432892 @default.
- W4224996817 hasConcept C57869625 @default.
- W4224996817 hasConcept C62520636 @default.
- W4224996817 hasConcept C93779851 @default.
- W4224996817 hasConcept C97355855 @default.
- W4224996817 hasConceptScore W4224996817C105795698 @default.
- W4224996817 hasConceptScore W4224996817C107457265 @default.
- W4224996817 hasConceptScore W4224996817C119599485 @default.
- W4224996817 hasConceptScore W4224996817C121332964 @default.
- W4224996817 hasConceptScore W4224996817C127162648 @default.
- W4224996817 hasConceptScore W4224996817C127413603 @default.
- W4224996817 hasConceptScore W4224996817C134306372 @default.
- W4224996817 hasConceptScore W4224996817C135628077 @default.
- W4224996817 hasConceptScore W4224996817C13847129 @default.
- W4224996817 hasConceptScore W4224996817C154945302 @default.
- W4224996817 hasConceptScore W4224996817C158453530 @default.
- W4224996817 hasConceptScore W4224996817C158622935 @default.
- W4224996817 hasConceptScore W4224996817C186763157 @default.
- W4224996817 hasConceptScore W4224996817C186899397 @default.
- W4224996817 hasConceptScore W4224996817C196216189 @default.
- W4224996817 hasConceptScore W4224996817C201362023 @default.
- W4224996817 hasConceptScore W4224996817C205203396 @default.
- W4224996817 hasConceptScore W4224996817C23917780 @default.
- W4224996817 hasConceptScore W4224996817C27016315 @default.
- W4224996817 hasConceptScore W4224996817C28826006 @default.
- W4224996817 hasConceptScore W4224996817C31447003 @default.
- W4224996817 hasConceptScore W4224996817C33923547 @default.
- W4224996817 hasConceptScore W4224996817C41008148 @default.
- W4224996817 hasConceptScore W4224996817C45473103 @default.
- W4224996817 hasConceptScore W4224996817C47432892 @default.
- W4224996817 hasConceptScore W4224996817C57869625 @default.
- W4224996817 hasConceptScore W4224996817C62520636 @default.
- W4224996817 hasConceptScore W4224996817C93779851 @default.
- W4224996817 hasConceptScore W4224996817C97355855 @default.