Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224998712> ?p ?o ?g. }
- W4224998712 endingPage "3791" @default.
- W4224998712 startingPage "3775" @default.
- W4224998712 abstract "Abstract An emerging trend is to use regression‐based machine learning approaches to predict cognitive functions at the individual level from neuroimaging data. However, individual prediction models are inherently influenced by the vast options for network construction and model selection in machine learning pipelines. In particular, the brain white matter (WM) structural connectome lacks a systematic evaluation of the effects of different options in the pipeline on predictive performance. Here, we focused on the methodological evaluation of brain structural connectome‐based predictions. For network construction, we considered two parcellation schemes for defining nodes and seven strategies for defining edges. For the regression algorithms, we used eight regression models. Four cognitive domains and brain age were targeted as predictive tasks based on two independent datasets (Beijing Aging Brain Rejuvenation Initiative [BABRI]: 633 healthy older adults; Human Connectome Projects in Aging [HCP‐A]: 560 healthy older adults). Based on the results, the WM structural connectome provided a satisfying predictive ability for individual age and cognitive functions, especially for executive function and attention. Second, different parcellation schemes induce a significant difference in predictive performance. Third, prediction results from different data sets showed that dMRI with distinct acquisition parameters may plausibly result in a preference for proper fiber reconstruction algorithms and different weighting options. Finally, deep learning and Elastic‐Net models are more accurate and robust in connectome‐based predictions. Together, significant effects of different options in WM network construction and regression algorithms on the predictive performances are identified in this study, which may provide important references and guidelines to select suitable options for future studies in this field." @default.
- W4224998712 created "2022-04-29" @default.
- W4224998712 creator A5009092975 @default.
- W4224998712 creator A5022526821 @default.
- W4224998712 creator A5028053023 @default.
- W4224998712 creator A5030234898 @default.
- W4224998712 creator A5056348325 @default.
- W4224998712 creator A5076778687 @default.
- W4224998712 creator A5078606666 @default.
- W4224998712 creator A5079180080 @default.
- W4224998712 creator A5086148125 @default.
- W4224998712 date "2022-04-27" @default.
- W4224998712 modified "2023-10-18" @default.
- W4224998712 title "Methodological evaluation of individual cognitive prediction based on the brain white matter structural connectome" @default.
- W4224998712 cites W1586771686 @default.
- W4224998712 cites W1943131318 @default.
- W4224998712 cites W1964631927 @default.
- W4224998712 cites W1965445933 @default.
- W4224998712 cites W1983208069 @default.
- W4224998712 cites W1999653836 @default.
- W4224998712 cites W2000133863 @default.
- W4224998712 cites W2005821483 @default.
- W4224998712 cites W2014022174 @default.
- W4224998712 cites W2021077818 @default.
- W4224998712 cites W2025065484 @default.
- W4224998712 cites W2052644075 @default.
- W4224998712 cites W2053508158 @default.
- W4224998712 cites W2058046532 @default.
- W4224998712 cites W2094016424 @default.
- W4224998712 cites W2117029142 @default.
- W4224998712 cites W2130801245 @default.
- W4224998712 cites W2136395604 @default.
- W4224998712 cites W2142059961 @default.
- W4224998712 cites W2146693559 @default.
- W4224998712 cites W2167822639 @default.
- W4224998712 cites W2174056659 @default.
- W4224998712 cites W2196267284 @default.
- W4224998712 cites W2402346616 @default.
- W4224998712 cites W2526511911 @default.
- W4224998712 cites W2549366107 @default.
- W4224998712 cites W2550442903 @default.
- W4224998712 cites W2590328111 @default.
- W4224998712 cites W2605217072 @default.
- W4224998712 cites W2735221233 @default.
- W4224998712 cites W2758113150 @default.
- W4224998712 cites W2763508406 @default.
- W4224998712 cites W2766141193 @default.
- W4224998712 cites W2782673913 @default.
- W4224998712 cites W2793731180 @default.
- W4224998712 cites W2804164821 @default.
- W4224998712 cites W2807683509 @default.
- W4224998712 cites W2884183601 @default.
- W4224998712 cites W2884367318 @default.
- W4224998712 cites W2896555885 @default.
- W4224998712 cites W2897261359 @default.
- W4224998712 cites W2898333661 @default.
- W4224998712 cites W2915130814 @default.
- W4224998712 cites W2920509382 @default.
- W4224998712 cites W2952053251 @default.
- W4224998712 cites W2952237357 @default.
- W4224998712 cites W2952871955 @default.
- W4224998712 cites W2964963690 @default.
- W4224998712 cites W2965700737 @default.
- W4224998712 cites W2979650665 @default.
- W4224998712 cites W2979971971 @default.
- W4224998712 cites W3006025189 @default.
- W4224998712 cites W3008923041 @default.
- W4224998712 cites W3013830096 @default.
- W4224998712 cites W3023275058 @default.
- W4224998712 cites W3035809474 @default.
- W4224998712 cites W3036369342 @default.
- W4224998712 cites W3037763836 @default.
- W4224998712 cites W3040978628 @default.
- W4224998712 cites W3081565719 @default.
- W4224998712 cites W3092037825 @default.
- W4224998712 cites W3108893378 @default.
- W4224998712 cites W3119000187 @default.
- W4224998712 cites W3130497051 @default.
- W4224998712 cites W3135100175 @default.
- W4224998712 cites W3142562813 @default.
- W4224998712 cites W3147329854 @default.
- W4224998712 cites W3158327387 @default.
- W4224998712 cites W3189061088 @default.
- W4224998712 cites W4224998712 @default.
- W4224998712 cites W4235770099 @default.
- W4224998712 cites W4246298021 @default.
- W4224998712 doi "https://doi.org/10.1002/hbm.25883" @default.
- W4224998712 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35475571" @default.
- W4224998712 hasPublicationYear "2022" @default.
- W4224998712 type Work @default.
- W4224998712 citedByCount "5" @default.
- W4224998712 countsByYear W42249987122022 @default.
- W4224998712 countsByYear W42249987122023 @default.
- W4224998712 crossrefType "journal-article" @default.
- W4224998712 hasAuthorship W4224998712A5009092975 @default.
- W4224998712 hasAuthorship W4224998712A5022526821 @default.
- W4224998712 hasAuthorship W4224998712A5028053023 @default.
- W4224998712 hasAuthorship W4224998712A5030234898 @default.