Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224998964> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4224998964 endingPage "104504" @default.
- W4224998964 startingPage "104504" @default.
- W4224998964 abstract "Predicting the future mechanical behavior of tunnel structure is vitally important to prevent accident disasters. However, in most of the existing models, the inadequate consideration for influencing factors reduced the final prediction accuracy. To this end, this study aims to develop an accurate prediction model considering the coupling effects of multiple influencing factors. First, the framework of model integrates the effects of Temporal, Spatial, and Load (TSL) dependencies is developed based on deep learning algorithm. Subsequently, TSL is formulated on the monitoring data obtained from the Wuhan Yangtze River tunnel and used to predict the mechanical behavior of this study case under an extreme condition. Through a series of experiments, the necessity of considering the coupling effects of multiple influencing factors is verified, and the parameter effects on model predictive capability are discussed. In addition, some commonly used prediction models, such as RNN, LSTM, Xgboost, SVR, LR, are selected as baselines to compare with TSL. Experimental results indicate that the predictive ability of TSL is superior among all models, whose accuracy improves 2.853% in next 15 days prediction. Therefore, it is essential to consider the couple effects of multiple factors, and the presented model is reasonable." @default.
- W4224998964 created "2022-04-29" @default.
- W4224998964 creator A5013194872 @default.
- W4224998964 creator A5025013285 @default.
- W4224998964 creator A5042574403 @default.
- W4224998964 creator A5053487836 @default.
- W4224998964 creator A5077466562 @default.
- W4224998964 date "2022-07-01" @default.
- W4224998964 modified "2023-09-30" @default.
- W4224998964 title "Prediction for the future mechanical behavior of underwater shield tunnel fusing deep learning algorithm on SHM data" @default.
- W4224998964 cites W1503596152 @default.
- W4224998964 cites W1966108446 @default.
- W4224998964 cites W2007820586 @default.
- W4224998964 cites W2016746101 @default.
- W4224998964 cites W2076050180 @default.
- W4224998964 cites W2082336324 @default.
- W4224998964 cites W2606434039 @default.
- W4224998964 cites W2810522349 @default.
- W4224998964 cites W2886565655 @default.
- W4224998964 cites W2888297823 @default.
- W4224998964 cites W2905454397 @default.
- W4224998964 cites W2963465451 @default.
- W4224998964 cites W2978050052 @default.
- W4224998964 cites W2995359231 @default.
- W4224998964 cites W3011508136 @default.
- W4224998964 cites W3011772218 @default.
- W4224998964 cites W3089592826 @default.
- W4224998964 cites W3113063417 @default.
- W4224998964 cites W3116862438 @default.
- W4224998964 cites W3136334612 @default.
- W4224998964 cites W3136631393 @default.
- W4224998964 cites W3146188393 @default.
- W4224998964 cites W3160123728 @default.
- W4224998964 cites W3174154555 @default.
- W4224998964 cites W3175519829 @default.
- W4224998964 cites W3179021350 @default.
- W4224998964 cites W751077916 @default.
- W4224998964 doi "https://doi.org/10.1016/j.tust.2022.104504" @default.
- W4224998964 hasPublicationYear "2022" @default.
- W4224998964 type Work @default.
- W4224998964 citedByCount "6" @default.
- W4224998964 countsByYear W42249989642023 @default.
- W4224998964 crossrefType "journal-article" @default.
- W4224998964 hasAuthorship W4224998964A5013194872 @default.
- W4224998964 hasAuthorship W4224998964A5025013285 @default.
- W4224998964 hasAuthorship W4224998964A5042574403 @default.
- W4224998964 hasAuthorship W4224998964A5053487836 @default.
- W4224998964 hasAuthorship W4224998964A5077466562 @default.
- W4224998964 hasConcept C111368507 @default.
- W4224998964 hasConcept C11413529 @default.
- W4224998964 hasConcept C119857082 @default.
- W4224998964 hasConcept C124101348 @default.
- W4224998964 hasConcept C127313418 @default.
- W4224998964 hasConcept C127413603 @default.
- W4224998964 hasConcept C131584629 @default.
- W4224998964 hasConcept C154945302 @default.
- W4224998964 hasConcept C41008148 @default.
- W4224998964 hasConcept C45804977 @default.
- W4224998964 hasConcept C78519656 @default.
- W4224998964 hasConcept C98083399 @default.
- W4224998964 hasConceptScore W4224998964C111368507 @default.
- W4224998964 hasConceptScore W4224998964C11413529 @default.
- W4224998964 hasConceptScore W4224998964C119857082 @default.
- W4224998964 hasConceptScore W4224998964C124101348 @default.
- W4224998964 hasConceptScore W4224998964C127313418 @default.
- W4224998964 hasConceptScore W4224998964C127413603 @default.
- W4224998964 hasConceptScore W4224998964C131584629 @default.
- W4224998964 hasConceptScore W4224998964C154945302 @default.
- W4224998964 hasConceptScore W4224998964C41008148 @default.
- W4224998964 hasConceptScore W4224998964C45804977 @default.
- W4224998964 hasConceptScore W4224998964C78519656 @default.
- W4224998964 hasConceptScore W4224998964C98083399 @default.
- W4224998964 hasLocation W42249989641 @default.
- W4224998964 hasOpenAccess W4224998964 @default.
- W4224998964 hasPrimaryLocation W42249989641 @default.
- W4224998964 hasRelatedWork W2961085424 @default.
- W4224998964 hasRelatedWork W3046775127 @default.
- W4224998964 hasRelatedWork W3160244858 @default.
- W4224998964 hasRelatedWork W3170094116 @default.
- W4224998964 hasRelatedWork W4205958290 @default.
- W4224998964 hasRelatedWork W4285260836 @default.
- W4224998964 hasRelatedWork W4286629047 @default.
- W4224998964 hasRelatedWork W4306321456 @default.
- W4224998964 hasRelatedWork W4306674287 @default.
- W4224998964 hasRelatedWork W4224009465 @default.
- W4224998964 hasVolume "125" @default.
- W4224998964 isParatext "false" @default.
- W4224998964 isRetracted "false" @default.
- W4224998964 workType "article" @default.