Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225007536> ?p ?o ?g. }
- W4225007536 endingPage "109139" @default.
- W4225007536 startingPage "109139" @default.
- W4225007536 abstract "The performance of swirl-vane separator is mainly obtained by experiments or numerical simulation, which is expensive and time-consuming. ANN models based on a back-propagation neural network (BPNN), a generalized regression neural network (GRNN), and an Elman neural network (Elman NN) have been developed. 127 experimentally obtained separator performance data points are used for model training and verification. The results show that GRNN model demonstrated the highest prediction accuracy. Furthermore, parametric analysis for the gas–liquid separator is carried out by GRNN model incorporated with response surface method (RSM) which shows advantage to reflect the multivariate interaction of separator. It is found that three items (Rewater, Regas × d and Rewater × d) play the key roles in affecting separation efficiency. Quadratic polynomial correlations for separation performance have been developed by RSM and have discrepancies less than 7.5% compared with the experimental results, which show good performance to quickly and accurately predict the performance of separators." @default.
- W4225007536 created "2022-04-29" @default.
- W4225007536 creator A5001829396 @default.
- W4225007536 creator A5010444377 @default.
- W4225007536 creator A5017646135 @default.
- W4225007536 creator A5066845808 @default.
- W4225007536 date "2022-09-01" @default.
- W4225007536 modified "2023-10-06" @default.
- W4225007536 title "Separator performance modeling and analysis using artificial neural network and response surface method" @default.
- W4225007536 cites W1977887131 @default.
- W4225007536 cites W1981469768 @default.
- W4225007536 cites W1994044665 @default.
- W4225007536 cites W2017273581 @default.
- W4225007536 cites W2033945014 @default.
- W4225007536 cites W2041794483 @default.
- W4225007536 cites W2061636672 @default.
- W4225007536 cites W2067503646 @default.
- W4225007536 cites W2073218938 @default.
- W4225007536 cites W2091398243 @default.
- W4225007536 cites W2119960866 @default.
- W4225007536 cites W2159537443 @default.
- W4225007536 cites W2268819958 @default.
- W4225007536 cites W2283066195 @default.
- W4225007536 cites W2738198984 @default.
- W4225007536 cites W2778341911 @default.
- W4225007536 cites W2897901683 @default.
- W4225007536 cites W2898497031 @default.
- W4225007536 cites W2957163531 @default.
- W4225007536 cites W2969196086 @default.
- W4225007536 cites W2992808985 @default.
- W4225007536 cites W3005788904 @default.
- W4225007536 cites W3033933914 @default.
- W4225007536 cites W3092706069 @default.
- W4225007536 cites W3134563434 @default.
- W4225007536 cites W3161484275 @default.
- W4225007536 cites W3208766504 @default.
- W4225007536 cites W4200274264 @default.
- W4225007536 cites W4200314437 @default.
- W4225007536 cites W4210932782 @default.
- W4225007536 cites W4214534127 @default.
- W4225007536 doi "https://doi.org/10.1016/j.anucene.2022.109139" @default.
- W4225007536 hasPublicationYear "2022" @default.
- W4225007536 type Work @default.
- W4225007536 citedByCount "4" @default.
- W4225007536 countsByYear W42250075362022 @default.
- W4225007536 countsByYear W42250075362023 @default.
- W4225007536 crossrefType "journal-article" @default.
- W4225007536 hasAuthorship W4225007536A5001829396 @default.
- W4225007536 hasAuthorship W4225007536A5010444377 @default.
- W4225007536 hasAuthorship W4225007536A5017646135 @default.
- W4225007536 hasAuthorship W4225007536A5066845808 @default.
- W4225007536 hasConcept C105795698 @default.
- W4225007536 hasConcept C117251300 @default.
- W4225007536 hasConcept C119857082 @default.
- W4225007536 hasConcept C120068334 @default.
- W4225007536 hasConcept C121332964 @default.
- W4225007536 hasConcept C129844170 @default.
- W4225007536 hasConcept C150077022 @default.
- W4225007536 hasConcept C152877465 @default.
- W4225007536 hasConcept C154945302 @default.
- W4225007536 hasConcept C161584116 @default.
- W4225007536 hasConcept C185004128 @default.
- W4225007536 hasConcept C2524010 @default.
- W4225007536 hasConcept C33923547 @default.
- W4225007536 hasConcept C41008148 @default.
- W4225007536 hasConcept C50644808 @default.
- W4225007536 hasConcept C97355855 @default.
- W4225007536 hasConceptScore W4225007536C105795698 @default.
- W4225007536 hasConceptScore W4225007536C117251300 @default.
- W4225007536 hasConceptScore W4225007536C119857082 @default.
- W4225007536 hasConceptScore W4225007536C120068334 @default.
- W4225007536 hasConceptScore W4225007536C121332964 @default.
- W4225007536 hasConceptScore W4225007536C129844170 @default.
- W4225007536 hasConceptScore W4225007536C150077022 @default.
- W4225007536 hasConceptScore W4225007536C152877465 @default.
- W4225007536 hasConceptScore W4225007536C154945302 @default.
- W4225007536 hasConceptScore W4225007536C161584116 @default.
- W4225007536 hasConceptScore W4225007536C185004128 @default.
- W4225007536 hasConceptScore W4225007536C2524010 @default.
- W4225007536 hasConceptScore W4225007536C33923547 @default.
- W4225007536 hasConceptScore W4225007536C41008148 @default.
- W4225007536 hasConceptScore W4225007536C50644808 @default.
- W4225007536 hasConceptScore W4225007536C97355855 @default.
- W4225007536 hasLocation W42250075361 @default.
- W4225007536 hasOpenAccess W4225007536 @default.
- W4225007536 hasPrimaryLocation W42250075361 @default.
- W4225007536 hasRelatedWork W2012246571 @default.
- W4225007536 hasRelatedWork W2014870507 @default.
- W4225007536 hasRelatedWork W2052657336 @default.
- W4225007536 hasRelatedWork W2057291317 @default.
- W4225007536 hasRelatedWork W2366131626 @default.
- W4225007536 hasRelatedWork W2790053847 @default.
- W4225007536 hasRelatedWork W3025928142 @default.
- W4225007536 hasRelatedWork W4225007536 @default.
- W4225007536 hasRelatedWork W4312457967 @default.
- W4225007536 hasRelatedWork W2552535449 @default.
- W4225007536 hasVolume "174" @default.
- W4225007536 isParatext "false" @default.