Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225008436> ?p ?o ?g. }
- W4225008436 endingPage "5274" @default.
- W4225008436 startingPage "5274" @default.
- W4225008436 abstract "Capacity curves obtained from nonlinear static analyses are widely used to perform seismic assessments of structures as an alternative to dynamic analysis. This paper presents a novel ‘en masse’ method to assess the seismic vulnerability of urban areas swiftly and with the accuracy of mechanical methods. At the core of this methodology is the calculation of the capacity curves of low-rise reinforced concrete buildings using neural networks, where no modeling of the building is required. The curves are predicted with minimal error, needing only basic geometric and material parameters of the structures to be specified. As a first implementation, a typology of prismatic buildings is defined and a training set of more than 7000 structures generated. The capacity curves are calculated through push-over analysis using SAP2000. The results feature the prediction of 100-point curves in a single run of the network while maintaining a very low mean absolute error. This paper proposes a method that improves current seismic assessment tools by providing a fast and accurate calculation of the vulnerability of large sets of buildings in urban environments." @default.
- W4225008436 created "2022-04-29" @default.
- W4225008436 creator A5000058117 @default.
- W4225008436 creator A5006804370 @default.
- W4225008436 creator A5017218316 @default.
- W4225008436 creator A5022664889 @default.
- W4225008436 creator A5037284816 @default.
- W4225008436 creator A5060966055 @default.
- W4225008436 creator A5084810487 @default.
- W4225008436 date "2022-04-27" @default.
- W4225008436 modified "2023-10-18" @default.
- W4225008436 title "Fast Seismic Assessment of Built Urban Areas with the Accuracy of Mechanical Methods Using a Feedforward Neural Network" @default.
- W4225008436 cites W114517082 @default.
- W4225008436 cites W1185276885 @default.
- W4225008436 cites W1751298979 @default.
- W4225008436 cites W1969311277 @default.
- W4225008436 cites W1970262304 @default.
- W4225008436 cites W1975084684 @default.
- W4225008436 cites W1985242523 @default.
- W4225008436 cites W2000735800 @default.
- W4225008436 cites W2001847839 @default.
- W4225008436 cites W2022841475 @default.
- W4225008436 cites W2040450541 @default.
- W4225008436 cites W2050127080 @default.
- W4225008436 cites W2079921806 @default.
- W4225008436 cites W2121275492 @default.
- W4225008436 cites W2139786505 @default.
- W4225008436 cites W2143395338 @default.
- W4225008436 cites W2150782544 @default.
- W4225008436 cites W2154987621 @default.
- W4225008436 cites W2157080539 @default.
- W4225008436 cites W2292881979 @default.
- W4225008436 cites W2345976182 @default.
- W4225008436 cites W2510282576 @default.
- W4225008436 cites W2521000133 @default.
- W4225008436 cites W2565788280 @default.
- W4225008436 cites W2566079294 @default.
- W4225008436 cites W2587345921 @default.
- W4225008436 cites W2618530766 @default.
- W4225008436 cites W2735389197 @default.
- W4225008436 cites W2769672359 @default.
- W4225008436 cites W2789135478 @default.
- W4225008436 cites W2792363315 @default.
- W4225008436 cites W2793734850 @default.
- W4225008436 cites W2809409513 @default.
- W4225008436 cites W2887911837 @default.
- W4225008436 cites W2898456550 @default.
- W4225008436 cites W2900181558 @default.
- W4225008436 cites W2914894615 @default.
- W4225008436 cites W2920808372 @default.
- W4225008436 cites W2933411141 @default.
- W4225008436 cites W2937959455 @default.
- W4225008436 cites W2968929764 @default.
- W4225008436 cites W3011368646 @default.
- W4225008436 cites W3017053553 @default.
- W4225008436 cites W3022953487 @default.
- W4225008436 cites W3037979079 @default.
- W4225008436 cites W3047900803 @default.
- W4225008436 cites W3094568679 @default.
- W4225008436 cites W3118702683 @default.
- W4225008436 cites W3120037487 @default.
- W4225008436 cites W3143740751 @default.
- W4225008436 cites W3155076758 @default.
- W4225008436 cites W3163034687 @default.
- W4225008436 cites W3166337330 @default.
- W4225008436 cites W3191477311 @default.
- W4225008436 cites W3197509462 @default.
- W4225008436 cites W3202927580 @default.
- W4225008436 cites W3216752040 @default.
- W4225008436 cites W3217619493 @default.
- W4225008436 cites W4205714823 @default.
- W4225008436 cites W4210502683 @default.
- W4225008436 doi "https://doi.org/10.3390/su14095274" @default.
- W4225008436 hasPublicationYear "2022" @default.
- W4225008436 type Work @default.
- W4225008436 citedByCount "4" @default.
- W4225008436 countsByYear W42250084362022 @default.
- W4225008436 countsByYear W42250084362023 @default.
- W4225008436 crossrefType "journal-article" @default.
- W4225008436 hasAuthorship W4225008436A5000058117 @default.
- W4225008436 hasAuthorship W4225008436A5006804370 @default.
- W4225008436 hasAuthorship W4225008436A5017218316 @default.
- W4225008436 hasAuthorship W4225008436A5022664889 @default.
- W4225008436 hasAuthorship W4225008436A5037284816 @default.
- W4225008436 hasAuthorship W4225008436A5060966055 @default.
- W4225008436 hasAuthorship W4225008436A5084810487 @default.
- W4225008436 hasBestOaLocation W42250084361 @default.
- W4225008436 hasConcept C11413529 @default.
- W4225008436 hasConcept C119857082 @default.
- W4225008436 hasConcept C121332964 @default.
- W4225008436 hasConcept C127413603 @default.
- W4225008436 hasConcept C133731056 @default.
- W4225008436 hasConcept C137176749 @default.
- W4225008436 hasConcept C15744967 @default.
- W4225008436 hasConcept C158622935 @default.
- W4225008436 hasConcept C167063184 @default.
- W4225008436 hasConcept C177264268 @default.
- W4225008436 hasConcept C199360897 @default.