Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225009681> ?p ?o ?g. }
- W4225009681 abstract "To standardize the radiography imaging procedure, an image quality control framework using the deep learning technique was developed to segment and evaluate lumbar spine x-ray images according to a defined quality control standard.A dataset comprising anteroposterior, lateral, and oblique position lumbar spine x-ray images from 1,389 patients was analyzed in this study. The training set consisted of digital radiography images of 1,070 patients (800, 798, and 623 images of the anteroposterior, lateral, and oblique position, respectively) and the validation set included 319 patients (200, 205, and 156 images of the anteroposterior, lateral, and oblique position, respectively). The quality control standard for lumbar spine x-ray radiography in this study was defined using textbook guidelines of as a reference. An enhanced encoder-decoder fully convolutional network with U-net as the backbone was implemented to segment the anatomical structures in the x-ray images. The segmentations were used to build an automatic assessment method to detect unqualified images. The dice similarity coefficient was used to evaluate segmentation performance.The dice similarity coefficient of the anteroposterior position images ranged from 0.82 to 0.96 (mean 0.91 ± 0.06); the dice similarity coefficient of the lateral position images ranged from 0.71 to 0.95 (mean 0.87 ± 0.10); the dice similarity coefficient of the oblique position images ranged from 0.66 to 0.93 (mean 0.80 ± 0.14). The accuracy, sensitivity, and specificity of the assessment method on the validation set were 0.971-0.990 (mean 0.98 ± 0.10), 0.714-0.933 (mean 0.86 ± 0.13), and 0.995-1.000 (mean 0.99 ± 0.12) for the three positions, respectively.This deep learning-based algorithm achieves accurate segmentation of lumbar spine x-ray images. It provides a reliable and efficient method to identify the shape of the lumbar spine while automatically determining the radiographic image quality." @default.
- W4225009681 created "2022-04-29" @default.
- W4225009681 creator A5010738468 @default.
- W4225009681 creator A5030863883 @default.
- W4225009681 creator A5034654778 @default.
- W4225009681 creator A5058634601 @default.
- W4225009681 creator A5061698555 @default.
- W4225009681 creator A5066852726 @default.
- W4225009681 creator A5074289470 @default.
- W4225009681 creator A5074676360 @default.
- W4225009681 creator A5080817461 @default.
- W4225009681 date "2022-04-26" @default.
- W4225009681 modified "2023-10-12" @default.
- W4225009681 title "Image Quality Control in Lumbar Spine Radiography Using Enhanced U-Net Neural Networks" @default.
- W4225009681 cites W1849559129 @default.
- W4225009681 cites W1945374102 @default.
- W4225009681 cites W2012458935 @default.
- W4225009681 cites W2062407131 @default.
- W4225009681 cites W2151271185 @default.
- W4225009681 cites W2167810128 @default.
- W4225009681 cites W2170854299 @default.
- W4225009681 cites W2323852092 @default.
- W4225009681 cites W2522295728 @default.
- W4225009681 cites W2534847668 @default.
- W4225009681 cites W2559794190 @default.
- W4225009681 cites W2581082771 @default.
- W4225009681 cites W2607804943 @default.
- W4225009681 cites W2620818159 @default.
- W4225009681 cites W2790410554 @default.
- W4225009681 cites W2794567591 @default.
- W4225009681 cites W2794958817 @default.
- W4225009681 cites W2810349670 @default.
- W4225009681 cites W2891731114 @default.
- W4225009681 cites W2911410812 @default.
- W4225009681 cites W2915558782 @default.
- W4225009681 cites W2963420686 @default.
- W4225009681 cites W2967618867 @default.
- W4225009681 cites W2969119192 @default.
- W4225009681 cites W2982071196 @default.
- W4225009681 cites W3097117814 @default.
- W4225009681 cites W3102733987 @default.
- W4225009681 cites W3109092658 @default.
- W4225009681 cites W3128577806 @default.
- W4225009681 cites W3136313460 @default.
- W4225009681 cites W3187241719 @default.
- W4225009681 cites W3191157361 @default.
- W4225009681 cites W3199950729 @default.
- W4225009681 cites W3210762451 @default.
- W4225009681 cites W4206810509 @default.
- W4225009681 cites W4239396266 @default.
- W4225009681 doi "https://doi.org/10.3389/fpubh.2022.891766" @default.
- W4225009681 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35558524" @default.
- W4225009681 hasPublicationYear "2022" @default.
- W4225009681 type Work @default.
- W4225009681 citedByCount "1" @default.
- W4225009681 countsByYear W42250096812023 @default.
- W4225009681 crossrefType "journal-article" @default.
- W4225009681 hasAuthorship W4225009681A5010738468 @default.
- W4225009681 hasAuthorship W4225009681A5030863883 @default.
- W4225009681 hasAuthorship W4225009681A5034654778 @default.
- W4225009681 hasAuthorship W4225009681A5058634601 @default.
- W4225009681 hasAuthorship W4225009681A5061698555 @default.
- W4225009681 hasAuthorship W4225009681A5066852726 @default.
- W4225009681 hasAuthorship W4225009681A5074289470 @default.
- W4225009681 hasAuthorship W4225009681A5074676360 @default.
- W4225009681 hasAuthorship W4225009681A5080817461 @default.
- W4225009681 hasBestOaLocation W42250096811 @default.
- W4225009681 hasConcept C10138342 @default.
- W4225009681 hasConcept C103278499 @default.
- W4225009681 hasConcept C105795698 @default.
- W4225009681 hasConcept C115961682 @default.
- W4225009681 hasConcept C124504099 @default.
- W4225009681 hasConcept C126838900 @default.
- W4225009681 hasConcept C138885662 @default.
- W4225009681 hasConcept C154945302 @default.
- W4225009681 hasConcept C160697094 @default.
- W4225009681 hasConcept C162324750 @default.
- W4225009681 hasConcept C163892561 @default.
- W4225009681 hasConcept C198082294 @default.
- W4225009681 hasConcept C22029948 @default.
- W4225009681 hasConcept C2781305912 @default.
- W4225009681 hasConcept C2989005 @default.
- W4225009681 hasConcept C31972630 @default.
- W4225009681 hasConcept C33923547 @default.
- W4225009681 hasConcept C36454342 @default.
- W4225009681 hasConcept C41008148 @default.
- W4225009681 hasConcept C41895202 @default.
- W4225009681 hasConcept C55020928 @default.
- W4225009681 hasConcept C71924100 @default.
- W4225009681 hasConcept C81363708 @default.
- W4225009681 hasConcept C89600930 @default.
- W4225009681 hasConceptScore W4225009681C10138342 @default.
- W4225009681 hasConceptScore W4225009681C103278499 @default.
- W4225009681 hasConceptScore W4225009681C105795698 @default.
- W4225009681 hasConceptScore W4225009681C115961682 @default.
- W4225009681 hasConceptScore W4225009681C124504099 @default.
- W4225009681 hasConceptScore W4225009681C126838900 @default.
- W4225009681 hasConceptScore W4225009681C138885662 @default.
- W4225009681 hasConceptScore W4225009681C154945302 @default.
- W4225009681 hasConceptScore W4225009681C160697094 @default.