Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225012165> ?p ?o ?g. }
- W4225012165 endingPage "107517" @default.
- W4225012165 startingPage "107517" @default.
- W4225012165 abstract "• Three CNNs were developed for classification and regression of NIR-HSI data. • The proposed CNNs outperformed PLS and SVM on both classification and regression. • CNNs using < 20 effective wavelengths achieved results comparable to full wavelengths. • NIR-HSI with CNNs calibration can identify MFM adulterated with HFM, FBM, or HFM-FBM. Marine fishmeal (MFM) adulterated with low-cost processed animal proteins (PAPs) such as hydrolyzed feather meal (HFM) and fish by-product meal (FBM) has frequently occurred in the Chinese trade market. This commercial fraud generates a serious threat to farmed animal health and even human food safety. This study aims to develop a rapid detection method using near-infrared hyperspectral imaging (NIR-HSI) combined with deep learning modeling for qualitative and quantitative identification of MFM adulterated with HFM, FBM, and the binary adulterant (HFM-FBM). Three convolutional neural network (CNN) architectures with optimized parameters were constructed to predict sample classes, adulterant concentration, and amino acid content of adulterated samples, respectively. Partial least squares (PLS) and support vector machine (SVM) models were compared with the proposed CNN models. The overall results showed that the CNN outperformed the PLS and SVM on both classification and regression. The six-classification accuracy obtained by the CNN was up to 99.37%, while the R 2 of CNN regression prediction varied from 0.984 to 0.997. This study demonstrates that NIR-HSI coupled with CNN calibration provides a promising technique for the detection of MFM adulterated with PAPs." @default.
- W4225012165 created "2022-04-29" @default.
- W4225012165 creator A5016628945 @default.
- W4225012165 creator A5033118514 @default.
- W4225012165 creator A5056509089 @default.
- W4225012165 creator A5059760039 @default.
- W4225012165 creator A5059827848 @default.
- W4225012165 creator A5071578628 @default.
- W4225012165 creator A5081856970 @default.
- W4225012165 date "2022-09-01" @default.
- W4225012165 modified "2023-10-01" @default.
- W4225012165 title "Hyperspectral imaging coupled with CNN: A powerful approach for quantitative identification of feather meal and fish by-product meal adulterated in marine fishmeal" @default.
- W4225012165 cites W1973685299 @default.
- W4225012165 cites W1976882674 @default.
- W4225012165 cites W1984645960 @default.
- W4225012165 cites W1985804072 @default.
- W4225012165 cites W2004287809 @default.
- W4225012165 cites W2012070434 @default.
- W4225012165 cites W2019624240 @default.
- W4225012165 cites W2043017920 @default.
- W4225012165 cites W2054616505 @default.
- W4225012165 cites W2065746048 @default.
- W4225012165 cites W2083634029 @default.
- W4225012165 cites W2149771065 @default.
- W4225012165 cites W2564339002 @default.
- W4225012165 cites W2788166532 @default.
- W4225012165 cites W2792817593 @default.
- W4225012165 cites W2800574081 @default.
- W4225012165 cites W2883273084 @default.
- W4225012165 cites W2887409581 @default.
- W4225012165 cites W2887480108 @default.
- W4225012165 cites W2918060226 @default.
- W4225012165 cites W2958941798 @default.
- W4225012165 cites W2966757217 @default.
- W4225012165 cites W2968460295 @default.
- W4225012165 cites W2972882967 @default.
- W4225012165 cites W2974140502 @default.
- W4225012165 cites W3007197850 @default.
- W4225012165 cites W3010558195 @default.
- W4225012165 cites W3020679970 @default.
- W4225012165 cites W3035611289 @default.
- W4225012165 cites W3035867661 @default.
- W4225012165 cites W3135107044 @default.
- W4225012165 cites W3150234067 @default.
- W4225012165 cites W3152858711 @default.
- W4225012165 cites W3166689753 @default.
- W4225012165 cites W3194691286 @default.
- W4225012165 cites W4210722081 @default.
- W4225012165 cites W4285718163 @default.
- W4225012165 doi "https://doi.org/10.1016/j.microc.2022.107517" @default.
- W4225012165 hasPublicationYear "2022" @default.
- W4225012165 type Work @default.
- W4225012165 citedByCount "9" @default.
- W4225012165 countsByYear W42250121652022 @default.
- W4225012165 countsByYear W42250121652023 @default.
- W4225012165 crossrefType "journal-article" @default.
- W4225012165 hasAuthorship W4225012165A5016628945 @default.
- W4225012165 hasAuthorship W4225012165A5033118514 @default.
- W4225012165 hasAuthorship W4225012165A5056509089 @default.
- W4225012165 hasAuthorship W4225012165A5059760039 @default.
- W4225012165 hasAuthorship W4225012165A5059827848 @default.
- W4225012165 hasAuthorship W4225012165A5071578628 @default.
- W4225012165 hasAuthorship W4225012165A5081856970 @default.
- W4225012165 hasConcept C116834253 @default.
- W4225012165 hasConcept C18903297 @default.
- W4225012165 hasConcept C204288101 @default.
- W4225012165 hasConcept C2778345441 @default.
- W4225012165 hasConcept C2778896599 @default.
- W4225012165 hasConcept C2779992300 @default.
- W4225012165 hasConcept C2909208804 @default.
- W4225012165 hasConcept C31903555 @default.
- W4225012165 hasConcept C505870484 @default.
- W4225012165 hasConcept C86803240 @default.
- W4225012165 hasConceptScore W4225012165C116834253 @default.
- W4225012165 hasConceptScore W4225012165C18903297 @default.
- W4225012165 hasConceptScore W4225012165C204288101 @default.
- W4225012165 hasConceptScore W4225012165C2778345441 @default.
- W4225012165 hasConceptScore W4225012165C2778896599 @default.
- W4225012165 hasConceptScore W4225012165C2779992300 @default.
- W4225012165 hasConceptScore W4225012165C2909208804 @default.
- W4225012165 hasConceptScore W4225012165C31903555 @default.
- W4225012165 hasConceptScore W4225012165C505870484 @default.
- W4225012165 hasConceptScore W4225012165C86803240 @default.
- W4225012165 hasLocation W42250121651 @default.
- W4225012165 hasOpenAccess W4225012165 @default.
- W4225012165 hasPrimaryLocation W42250121651 @default.
- W4225012165 hasRelatedWork W1973163972 @default.
- W4225012165 hasRelatedWork W2188282033 @default.
- W4225012165 hasRelatedWork W2230472623 @default.
- W4225012165 hasRelatedWork W2321433211 @default.
- W4225012165 hasRelatedWork W2767935041 @default.
- W4225012165 hasRelatedWork W3088696496 @default.
- W4225012165 hasRelatedWork W3134909648 @default.
- W4225012165 hasRelatedWork W3205035667 @default.
- W4225012165 hasRelatedWork W2142846386 @default.
- W4225012165 hasRelatedWork W2186291547 @default.
- W4225012165 hasVolume "180" @default.
- W4225012165 isParatext "false" @default.