Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225014120> ?p ?o ?g. }
- W4225014120 endingPage "893" @default.
- W4225014120 startingPage "885" @default.
- W4225014120 abstract "BackgroundTransvenous lead extraction (TLE) remains a high-risk procedure.ObjectiveThe purpose of this study was to develop a machine learning (ML)–based risk stratification system to predict the risk of major adverse events (MAEs) after TLE. A MAE was defined as procedure-related major complication and procedure-related death.MethodsWe designed and evaluated an ML-based risk stratification system trained using the European Lead Extraction ConTRolled (ELECTRa) registry to predict the risk of MAEs in 3555 patients undergoing TLE and tested this on an independent registry of 1171 patients. ML models were developed, including a self-normalizing neural network (SNN), stepwise logistic regression model (“stepwise model”), support vector machines, and random forest model. These were compared with the ELECTRa Registry Outcome Score (EROS) for MAEs.ResultsThere were 53 MAEs (1.7%) in the training cohort and 24 (2.4%) in the test cohort. Thirty-two clinically important features were used to train the models. ML techniques were similar to EROS by balanced accuracy (stepwise model: 0.74 vs EROS: 0.70) and superior by area under the curve (support vector machines: 0.764 vs EROS: 0.677). The SNN provided a finite risk for MAE and accurately identified MAE in 14 of 169 “high (>80%) risk” patients (8.3%) and no MAEs in all 198 “low (<20%) risk” patients (100%).ConclusionML models incrementally improved risk prediction for identifying those at risk of MAEs. The SNN has the additional advantage of providing a personalized finite risk assessment for patients. This may aid patient decision making and allow better preoperative risk assessment and resource allocation. Transvenous lead extraction (TLE) remains a high-risk procedure. The purpose of this study was to develop a machine learning (ML)–based risk stratification system to predict the risk of major adverse events (MAEs) after TLE. A MAE was defined as procedure-related major complication and procedure-related death. We designed and evaluated an ML-based risk stratification system trained using the European Lead Extraction ConTRolled (ELECTRa) registry to predict the risk of MAEs in 3555 patients undergoing TLE and tested this on an independent registry of 1171 patients. ML models were developed, including a self-normalizing neural network (SNN), stepwise logistic regression model (“stepwise model”), support vector machines, and random forest model. These were compared with the ELECTRa Registry Outcome Score (EROS) for MAEs. There were 53 MAEs (1.7%) in the training cohort and 24 (2.4%) in the test cohort. Thirty-two clinically important features were used to train the models. ML techniques were similar to EROS by balanced accuracy (stepwise model: 0.74 vs EROS: 0.70) and superior by area under the curve (support vector machines: 0.764 vs EROS: 0.677). The SNN provided a finite risk for MAE and accurately identified MAE in 14 of 169 “high (>80%) risk” patients (8.3%) and no MAEs in all 198 “low (<20%) risk” patients (100%). ML models incrementally improved risk prediction for identifying those at risk of MAEs. The SNN has the additional advantage of providing a personalized finite risk assessment for patients. This may aid patient decision making and allow better preoperative risk assessment and resource allocation." @default.
- W4225014120 created "2022-04-29" @default.
- W4225014120 creator A5000435552 @default.
- W4225014120 creator A5013008858 @default.
- W4225014120 creator A5013691399 @default.
- W4225014120 creator A5016734550 @default.
- W4225014120 creator A5017935872 @default.
- W4225014120 creator A5018511955 @default.
- W4225014120 creator A5019202702 @default.
- W4225014120 creator A5023626855 @default.
- W4225014120 creator A5023712545 @default.
- W4225014120 creator A5028307640 @default.
- W4225014120 creator A5030474533 @default.
- W4225014120 creator A5039500853 @default.
- W4225014120 creator A5043700790 @default.
- W4225014120 creator A5056138191 @default.
- W4225014120 creator A5066426582 @default.
- W4225014120 creator A5067126294 @default.
- W4225014120 creator A5068890461 @default.
- W4225014120 creator A5069248283 @default.
- W4225014120 creator A5079334706 @default.
- W4225014120 creator A5088186128 @default.
- W4225014120 date "2022-06-01" @default.
- W4225014120 modified "2023-10-11" @default.
- W4225014120 title "Machine learning–derived major adverse event prediction of patients undergoing transvenous lead extraction: Using the ESC EHRA EORP European lead extraction ConTRolled ELECTRa registry" @default.
- W4225014120 cites W2062398305 @default.
- W4225014120 cites W2073742622 @default.
- W4225014120 cites W2104048107 @default.
- W4225014120 cites W2112796928 @default.
- W4225014120 cites W2157569241 @default.
- W4225014120 cites W2326287627 @default.
- W4225014120 cites W2525984666 @default.
- W4225014120 cites W2588978745 @default.
- W4225014120 cites W2599878351 @default.
- W4225014120 cites W2606609510 @default.
- W4225014120 cites W2756014510 @default.
- W4225014120 cites W2762921444 @default.
- W4225014120 cites W2793007539 @default.
- W4225014120 cites W2899568282 @default.
- W4225014120 cites W2906290451 @default.
- W4225014120 cites W2915459178 @default.
- W4225014120 cites W2999120055 @default.
- W4225014120 cites W2999600747 @default.
- W4225014120 cites W3004366825 @default.
- W4225014120 cites W3083697788 @default.
- W4225014120 cites W3125603166 @default.
- W4225014120 cites W3126008863 @default.
- W4225014120 cites W3132358762 @default.
- W4225014120 cites W3163297399 @default.
- W4225014120 cites W4206601343 @default.
- W4225014120 cites W932508888 @default.
- W4225014120 doi "https://doi.org/10.1016/j.hrthm.2021.12.036" @default.
- W4225014120 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35490083" @default.
- W4225014120 hasPublicationYear "2022" @default.
- W4225014120 type Work @default.
- W4225014120 citedByCount "4" @default.
- W4225014120 countsByYear W42250141202023 @default.
- W4225014120 crossrefType "journal-article" @default.
- W4225014120 hasAuthorship W4225014120A5000435552 @default.
- W4225014120 hasAuthorship W4225014120A5013008858 @default.
- W4225014120 hasAuthorship W4225014120A5013691399 @default.
- W4225014120 hasAuthorship W4225014120A5016734550 @default.
- W4225014120 hasAuthorship W4225014120A5017935872 @default.
- W4225014120 hasAuthorship W4225014120A5018511955 @default.
- W4225014120 hasAuthorship W4225014120A5019202702 @default.
- W4225014120 hasAuthorship W4225014120A5023626855 @default.
- W4225014120 hasAuthorship W4225014120A5023712545 @default.
- W4225014120 hasAuthorship W4225014120A5028307640 @default.
- W4225014120 hasAuthorship W4225014120A5030474533 @default.
- W4225014120 hasAuthorship W4225014120A5039500853 @default.
- W4225014120 hasAuthorship W4225014120A5043700790 @default.
- W4225014120 hasAuthorship W4225014120A5056138191 @default.
- W4225014120 hasAuthorship W4225014120A5066426582 @default.
- W4225014120 hasAuthorship W4225014120A5067126294 @default.
- W4225014120 hasAuthorship W4225014120A5068890461 @default.
- W4225014120 hasAuthorship W4225014120A5069248283 @default.
- W4225014120 hasAuthorship W4225014120A5079334706 @default.
- W4225014120 hasAuthorship W4225014120A5088186128 @default.
- W4225014120 hasBestOaLocation W42250141201 @default.
- W4225014120 hasConcept C119857082 @default.
- W4225014120 hasConcept C12174686 @default.
- W4225014120 hasConcept C12267149 @default.
- W4225014120 hasConcept C126322002 @default.
- W4225014120 hasConcept C141071460 @default.
- W4225014120 hasConcept C151956035 @default.
- W4225014120 hasConcept C154945302 @default.
- W4225014120 hasConcept C197934379 @default.
- W4225014120 hasConcept C3020404979 @default.
- W4225014120 hasConcept C38652104 @default.
- W4225014120 hasConcept C41008148 @default.
- W4225014120 hasConcept C71924100 @default.
- W4225014120 hasConcept C72563966 @default.
- W4225014120 hasConceptScore W4225014120C119857082 @default.
- W4225014120 hasConceptScore W4225014120C12174686 @default.
- W4225014120 hasConceptScore W4225014120C12267149 @default.
- W4225014120 hasConceptScore W4225014120C126322002 @default.
- W4225014120 hasConceptScore W4225014120C141071460 @default.
- W4225014120 hasConceptScore W4225014120C151956035 @default.