Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225079894> ?p ?o ?g. }
- W4225079894 abstract "Abstract In recent years, the use of smart devices has increased exponentially, resulting in massive amounts of data. To handle this data, effective data storage and management has required. Cloud computing (CC) is a promising solution to deal with this huge amount of data. Electronic devices are collecting real‐time data from sensors and applications through a wireless communication channel in the digital era. In some cases, CC cannot protect against various malicious attacks in the wireless communication channel. To address this issue, we have used machine learning (ML) and deep learning (DL) techniques for attack detection in a wireless channel on an early basis. It trains a model to predict malicious activities of attackers, which aids in the security of CC's sensitive data. We employed adversarial learning techniques (AL) to add fake data into the model to ensure that the trained model was correct. The trained model can distinguish between the fake and real data from the training samples and improve the training samples' performance. AL provides different defense mechanisms to preserve the privacy of ML‐ and DL‐based model but does not ensure the system's robustness. To improve the system's robustness, we have used federated learning with blockchain technology to make a system more robust, reliable, accurate, and transparent. This integration aids in providing high‐graded security against adversarial attacks. This paper presents a comprehensive review to highlight the recent improvements in AL techniques. Moreover, we explored the various AL applications in security and privacy preservation. Finally, open research issues and future directions are discussed to show future research avenues." @default.
- W4225079894 created "2022-04-29" @default.
- W4225079894 creator A5006823780 @default.
- W4225079894 creator A5020223159 @default.
- W4225079894 creator A5089077811 @default.
- W4225079894 date "2022-01-30" @default.
- W4225079894 modified "2023-10-06" @default.
- W4225079894 title "Adversarial learning techniques for security and privacy preservation: A comprehensive review" @default.
- W4225079894 cites W2168074924 @default.
- W4225079894 cites W2551509168 @default.
- W4225079894 cites W2581688519 @default.
- W4225079894 cites W2591915039 @default.
- W4225079894 cites W2594536436 @default.
- W4225079894 cites W2620678361 @default.
- W4225079894 cites W2752291283 @default.
- W4225079894 cites W2763925543 @default.
- W4225079894 cites W2765107644 @default.
- W4225079894 cites W2782565858 @default.
- W4225079894 cites W2782713273 @default.
- W4225079894 cites W2786010450 @default.
- W4225079894 cites W2786075294 @default.
- W4225079894 cites W2786435018 @default.
- W4225079894 cites W2789290512 @default.
- W4225079894 cites W2789761343 @default.
- W4225079894 cites W2805313764 @default.
- W4225079894 cites W2807210169 @default.
- W4225079894 cites W2810749629 @default.
- W4225079894 cites W2844602024 @default.
- W4225079894 cites W2859928837 @default.
- W4225079894 cites W2883701651 @default.
- W4225079894 cites W2885569475 @default.
- W4225079894 cites W2892908011 @default.
- W4225079894 cites W2893175877 @default.
- W4225079894 cites W2895380176 @default.
- W4225079894 cites W2897313686 @default.
- W4225079894 cites W2898485069 @default.
- W4225079894 cites W2899365571 @default.
- W4225079894 cites W2907421153 @default.
- W4225079894 cites W2918925950 @default.
- W4225079894 cites W2922088756 @default.
- W4225079894 cites W2926740896 @default.
- W4225079894 cites W2930249865 @default.
- W4225079894 cites W2935718310 @default.
- W4225079894 cites W2940576714 @default.
- W4225079894 cites W2941227905 @default.
- W4225079894 cites W2941491026 @default.
- W4225079894 cites W2942465044 @default.
- W4225079894 cites W2943063718 @default.
- W4225079894 cites W2946193070 @default.
- W4225079894 cites W2948038261 @default.
- W4225079894 cites W2948140566 @default.
- W4225079894 cites W2957231479 @default.
- W4225079894 cites W2962884037 @default.
- W4225079894 cites W2965117392 @default.
- W4225079894 cites W2968197850 @default.
- W4225079894 cites W2973379834 @default.
- W4225079894 cites W2980329246 @default.
- W4225079894 cites W2980441098 @default.
- W4225079894 cites W2982302101 @default.
- W4225079894 cites W2987098624 @default.
- W4225079894 cites W2988387426 @default.
- W4225079894 cites W2992998759 @default.
- W4225079894 cites W2993463367 @default.
- W4225079894 cites W2994515354 @default.
- W4225079894 cites W2997357271 @default.
- W4225079894 cites W2997532515 @default.
- W4225079894 cites W2997990748 @default.
- W4225079894 cites W3003570749 @default.
- W4225079894 cites W3005929894 @default.
- W4225079894 cites W3006115916 @default.
- W4225079894 cites W3006558576 @default.
- W4225079894 cites W3007023507 @default.
- W4225079894 cites W3007092232 @default.
- W4225079894 cites W3007481080 @default.
- W4225079894 cites W3008600096 @default.
- W4225079894 cites W3009627224 @default.
- W4225079894 cites W3011007940 @default.
- W4225079894 cites W3011027433 @default.
- W4225079894 cites W3014517104 @default.
- W4225079894 cites W3016560828 @default.
- W4225079894 cites W3017967666 @default.
- W4225079894 cites W3025488852 @default.
- W4225079894 cites W3034802054 @default.
- W4225079894 cites W3037512809 @default.
- W4225079894 cites W3039539327 @default.
- W4225079894 cites W3042739153 @default.
- W4225079894 cites W3046918297 @default.
- W4225079894 cites W3047095708 @default.
- W4225079894 cites W3047621094 @default.
- W4225079894 cites W3048123939 @default.
- W4225079894 cites W3051272477 @default.
- W4225079894 cites W3080847572 @default.
- W4225079894 cites W3081084674 @default.
- W4225079894 cites W3081255579 @default.
- W4225079894 cites W3085052658 @default.
- W4225079894 cites W3091870957 @default.
- W4225079894 cites W3093979521 @default.
- W4225079894 cites W3095714927 @default.
- W4225079894 cites W3098784686 @default.
- W4225079894 cites W3108596449 @default.