Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225087478> ?p ?o ?g. }
- W4225087478 endingPage "e38308" @default.
- W4225087478 startingPage "e38308" @default.
- W4225087478 abstract "The COVID-19 pandemic has changed the usual working of many hospitalization units (or wards). Few studies have used electronic nursing clinical notes (ENCN) and their unstructured text to identify alterations in patients' feelings and therapeutic procedures of interest.This study aimed to analyze positive or negative sentiments through inspection of the free text of the ENCN, compare sentiments of ENCN with or without hospitalized patients with COVID-19, carry out temporal analysis of the sentiments of the patients during the start of the first wave of the COVID-19 pandemic, and identify the topics in ENCN.This is a descriptive study with analysis of the text content of ENCN. All ENCNs between January and June 2020 at Guadarrama Hospital (Madrid, Spain) extracted from the CGM Selene Electronic Health Records System were included. Two groups of ENCNs were analyzed: one from hospitalized patients in post-intensive care units for COVID-19 and a second group from hospitalized patients without COVID-19. A sentiment analysis was performed on the lemmatized text, using the National Research Council of Canada, Affin, and Bing dictionaries. A polarity analysis of the sentences was performed using the Bing dictionary, SO Dictionaries V1.11, and Spa dictionary as amplifiers and decrementators. Machine learning techniques were applied to evaluate the presence of significant differences in the ENCN in groups of patients with and those without COVID-19. Finally, a structural analysis of thematic models was performed to study the abstract topics that occur in the ENCN, using Latent Dirichlet Allocation topic modeling.A total of 37,564 electronic health records were analyzed. Sentiment analysis in ENCN showed that patients with subacute COVID-19 have a higher proportion of positive sentiments than those without COVID-19. Also, there are significant differences in polarity between both groups (Z=5.532, P<.001) with a polarity of 0.108 (SD 0.299) in patients with COVID-19 versus that of 0.09 (SD 0.301) in those without COVID-19. Machine learning modeling reported that despite all models presenting high values, it is the neural network that presents the best indicators (>0.8) and with significant P values between both groups. Through Structural Topic Modeling analysis, the final model containing 10 topics was selected. High correlations were noted among topics 2, 5, and 8 (pressure ulcer and pharmacotherapy treatment), topics 1, 4, 7, and 9 (incidences related to fever and well-being state, and baseline oxygen saturation) and topics 3 and 10 (blood glucose level and pain).The ENCN may help in the development and implementation of more effective programs, which allows patients with COVID-19 to adopt to their prepandemic lifestyle faster. Topic modeling could help identify specific clinical problems in patients and better target the care they receive." @default.
- W4225087478 created "2022-04-30" @default.
- W4225087478 creator A5005139200 @default.
- W4225087478 creator A5010048582 @default.
- W4225087478 creator A5015716277 @default.
- W4225087478 creator A5017649045 @default.
- W4225087478 creator A5035819506 @default.
- W4225087478 creator A5086655865 @default.
- W4225087478 creator A5087548966 @default.
- W4225087478 date "2022-05-12" @default.
- W4225087478 modified "2023-10-15" @default.
- W4225087478 title "Exploring Sentiment and Care Management of Hospitalized Patients During the First Wave of the COVID-19 Pandemic Using Electronic Nursing Health Records: Descriptive Study" @default.
- W4225087478 cites W1801410264 @default.
- W4225087478 cites W2001082470 @default.
- W4225087478 cites W2025848445 @default.
- W4225087478 cites W202643521 @default.
- W4225087478 cites W2040467972 @default.
- W4225087478 cites W2054290230 @default.
- W4225087478 cites W2084046180 @default.
- W4225087478 cites W2102117374 @default.
- W4225087478 cites W2141747195 @default.
- W4225087478 cites W2273556505 @default.
- W4225087478 cites W2286551681 @default.
- W4225087478 cites W2460863069 @default.
- W4225087478 cites W2461674664 @default.
- W4225087478 cites W2562059022 @default.
- W4225087478 cites W2601917368 @default.
- W4225087478 cites W2805422302 @default.
- W4225087478 cites W2884249773 @default.
- W4225087478 cites W2921620132 @default.
- W4225087478 cites W2943016639 @default.
- W4225087478 cites W2945462115 @default.
- W4225087478 cites W2951045446 @default.
- W4225087478 cites W2966351171 @default.
- W4225087478 cites W2979502588 @default.
- W4225087478 cites W3002108456 @default.
- W4225087478 cites W3003668884 @default.
- W4225087478 cites W3003790823 @default.
- W4225087478 cites W3003833946 @default.
- W4225087478 cites W3008874180 @default.
- W4225087478 cites W3011173338 @default.
- W4225087478 cites W3011622189 @default.
- W4225087478 cites W3012813927 @default.
- W4225087478 cites W3013188818 @default.
- W4225087478 cites W3013365435 @default.
- W4225087478 cites W3013605954 @default.
- W4225087478 cites W3014712943 @default.
- W4225087478 cites W3016982727 @default.
- W4225087478 cites W3017257354 @default.
- W4225087478 cites W3024701495 @default.
- W4225087478 cites W3047045277 @default.
- W4225087478 cites W3049433671 @default.
- W4225087478 cites W3107435339 @default.
- W4225087478 cites W3115795817 @default.
- W4225087478 cites W3115815435 @default.
- W4225087478 cites W3121273931 @default.
- W4225087478 cites W3124516888 @default.
- W4225087478 cites W3126986989 @default.
- W4225087478 cites W3131269036 @default.
- W4225087478 cites W3141554602 @default.
- W4225087478 cites W3181833733 @default.
- W4225087478 cites W4232871371 @default.
- W4225087478 cites W854920577 @default.
- W4225087478 doi "https://doi.org/10.2196/38308" @default.
- W4225087478 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35486902" @default.
- W4225087478 hasPublicationYear "2022" @default.
- W4225087478 type Work @default.
- W4225087478 citedByCount "5" @default.
- W4225087478 countsByYear W42250874782022 @default.
- W4225087478 countsByYear W42250874782023 @default.
- W4225087478 crossrefType "journal-article" @default.
- W4225087478 hasAuthorship W4225087478A5005139200 @default.
- W4225087478 hasAuthorship W4225087478A5010048582 @default.
- W4225087478 hasAuthorship W4225087478A5015716277 @default.
- W4225087478 hasAuthorship W4225087478A5017649045 @default.
- W4225087478 hasAuthorship W4225087478A5035819506 @default.
- W4225087478 hasAuthorship W4225087478A5086655865 @default.
- W4225087478 hasAuthorship W4225087478A5087548966 @default.
- W4225087478 hasBestOaLocation W42250874781 @default.
- W4225087478 hasConcept C105795698 @default.
- W4225087478 hasConcept C122980154 @default.
- W4225087478 hasConcept C142724271 @default.
- W4225087478 hasConcept C144024400 @default.
- W4225087478 hasConcept C154945302 @default.
- W4225087478 hasConcept C15744967 @default.
- W4225087478 hasConcept C160735492 @default.
- W4225087478 hasConcept C171686336 @default.
- W4225087478 hasConcept C17744445 @default.
- W4225087478 hasConcept C190248442 @default.
- W4225087478 hasConcept C199539241 @default.
- W4225087478 hasConcept C2779134260 @default.
- W4225087478 hasConcept C3008058167 @default.
- W4225087478 hasConcept C33923547 @default.
- W4225087478 hasConcept C36289849 @default.
- W4225087478 hasConcept C39896193 @default.
- W4225087478 hasConcept C41008148 @default.
- W4225087478 hasConcept C500882744 @default.
- W4225087478 hasConcept C524204448 @default.