Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225087485> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4225087485 abstract "Background: The diagnosis of multiple sclerosis (MS) d requires demyelinating events that are disseminated in time and space. Peripapillary retinal nerve fiber layer (pRNFL) thickness as measured by optical coherence tomography (OCT) distinguishes eyes with a prior history of acute optic neuritis (ON) and may provide evidence to support a demyelinating attack. Objective: To investigate whether a deep learning (DL)-based network can distinguish between eyes with prior ON and healthy control (HC) eyes using peripapillary ring scans. Methods: We included 1,033 OCT scans from 415 healthy eyes (213 HC subjects) and 510 peripapillary ring scans from 164 eyes with prior acute ON (140 patients with MS). Data were split into 70% training (728 HC and 352 ON), 15% validation (152 HC and 79 ON), and 15% test data (153 HC and 79 ON). We included 102 OCT scans from 80 healthy eyes (40 HC) and 61 scans from 40 ON eyes (31 MS patients) from an independent second center. Receiver operating characteristic curve (ROC) analyses with area under the curve (AUC) were used to investigate performance. Results: We used a dilated residual convolutional neural network with alternating convolutional and max pooling layers for the classification. A final network using 2-factor augmentation had an accuracy of 0.85. The network achieved an area under the curve (AUC) of 0.86, whereas pRNFL only had an AUC of 0.77 in recognizing ON eyes. Using data from a second center, the network achieved an accuracy of 0.77 and an AUC of 0.90 compared to pRNFL, which had an AUC of 0.84. Conclusion: DL-based disease classification of prior ON is feasible and has the potential to outperform thickness-based classification of eyes with and without history of prior ON." @default.
- W4225087485 created "2022-04-30" @default.
- W4225087485 creator A5013357095 @default.
- W4225087485 creator A5031416421 @default.
- W4225087485 creator A5032686627 @default.
- W4225087485 creator A5047859644 @default.
- W4225087485 creator A5060011032 @default.
- W4225087485 creator A5062734119 @default.
- W4225087485 creator A5063194151 @default.
- W4225087485 creator A5065023523 @default.
- W4225087485 creator A5066288668 @default.
- W4225087485 creator A5088512021 @default.
- W4225087485 date "2022-04-28" @default.
- W4225087485 modified "2023-10-16" @default.
- W4225087485 title "Prior Optic Neuritis Detection on Peripapillary Ring Scans using Deep Learning" @default.
- W4225087485 doi "https://doi.org/10.1101/2022.04.27.22274388" @default.
- W4225087485 hasPublicationYear "2022" @default.
- W4225087485 type Work @default.
- W4225087485 citedByCount "0" @default.
- W4225087485 crossrefType "posted-content" @default.
- W4225087485 hasAuthorship W4225087485A5013357095 @default.
- W4225087485 hasAuthorship W4225087485A5031416421 @default.
- W4225087485 hasAuthorship W4225087485A5032686627 @default.
- W4225087485 hasAuthorship W4225087485A5047859644 @default.
- W4225087485 hasAuthorship W4225087485A5060011032 @default.
- W4225087485 hasAuthorship W4225087485A5062734119 @default.
- W4225087485 hasAuthorship W4225087485A5063194151 @default.
- W4225087485 hasAuthorship W4225087485A5065023523 @default.
- W4225087485 hasAuthorship W4225087485A5066288668 @default.
- W4225087485 hasAuthorship W4225087485A5088512021 @default.
- W4225087485 hasBestOaLocation W42250874851 @default.
- W4225087485 hasConcept C112705442 @default.
- W4225087485 hasConcept C118487528 @default.
- W4225087485 hasConcept C118552586 @default.
- W4225087485 hasConcept C126322002 @default.
- W4225087485 hasConcept C2776572573 @default.
- W4225087485 hasConcept C2778818243 @default.
- W4225087485 hasConcept C2780592520 @default.
- W4225087485 hasConcept C2780640218 @default.
- W4225087485 hasConcept C2780827179 @default.
- W4225087485 hasConcept C2989005 @default.
- W4225087485 hasConcept C3020225094 @default.
- W4225087485 hasConcept C58471807 @default.
- W4225087485 hasConcept C71924100 @default.
- W4225087485 hasConcept C76318530 @default.
- W4225087485 hasConceptScore W4225087485C112705442 @default.
- W4225087485 hasConceptScore W4225087485C118487528 @default.
- W4225087485 hasConceptScore W4225087485C118552586 @default.
- W4225087485 hasConceptScore W4225087485C126322002 @default.
- W4225087485 hasConceptScore W4225087485C2776572573 @default.
- W4225087485 hasConceptScore W4225087485C2778818243 @default.
- W4225087485 hasConceptScore W4225087485C2780592520 @default.
- W4225087485 hasConceptScore W4225087485C2780640218 @default.
- W4225087485 hasConceptScore W4225087485C2780827179 @default.
- W4225087485 hasConceptScore W4225087485C2989005 @default.
- W4225087485 hasConceptScore W4225087485C3020225094 @default.
- W4225087485 hasConceptScore W4225087485C58471807 @default.
- W4225087485 hasConceptScore W4225087485C71924100 @default.
- W4225087485 hasConceptScore W4225087485C76318530 @default.
- W4225087485 hasLocation W42250874851 @default.
- W4225087485 hasLocation W42250874852 @default.
- W4225087485 hasOpenAccess W4225087485 @default.
- W4225087485 hasPrimaryLocation W42250874851 @default.
- W4225087485 hasRelatedWork W1961281036 @default.
- W4225087485 hasRelatedWork W2001318290 @default.
- W4225087485 hasRelatedWork W2058063519 @default.
- W4225087485 hasRelatedWork W2069676834 @default.
- W4225087485 hasRelatedWork W2087142089 @default.
- W4225087485 hasRelatedWork W2138112715 @default.
- W4225087485 hasRelatedWork W2510130339 @default.
- W4225087485 hasRelatedWork W2795447585 @default.
- W4225087485 hasRelatedWork W4223952515 @default.
- W4225087485 hasRelatedWork W4225087485 @default.
- W4225087485 isParatext "false" @default.
- W4225087485 isRetracted "false" @default.
- W4225087485 workType "article" @default.