Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225096970> ?p ?o ?g. }
- W4225096970 endingPage "3064" @default.
- W4225096970 startingPage "3052" @default.
- W4225096970 abstract "The theoretical prediction of molecular electronic spectra by means of quantum mechanical (QM) computations is fundamental to gain a deep insight into many photophysical and photochemical processes. A computational strategy that is attracting significant attention is the so-called Nuclear Ensemble Approach (NEA), that relies on generating a representative ensemble of nuclear geometries around the equilibrium structure and computing the vertical excitation energies (ΔE) and oscillator strengths (f) and phenomenologically broadening each transition with a line-shaped function with empirical full-width δ. Frequently, the choice of δ is carried out by visually finding the trade-off between artificial vibronic features (small δ) and over-smoothing of electronic signatures (large δ). Nevertheless, this approach is not satisfactory, as it relies on a subjective perception and may lead to spectral inaccuracies overall when the number of sampled configurations is limited due to an excessive computational burden (high-level QM methods, complex systems, solvent effects, etc.). In this work, we have developed and tested a new approach to reconstruct NEA spectra, dubbed GMM-NEA, based on the use of Gaussian Mixture Models (GMMs), a probabilistic machine learning algorithm, that circumvents the phenomenological broadening assumption and, in turn, the use of δ altogether. We show that GMM-NEA systematically outperforms other data-driven models to automatically select δ overall for small datasets. In addition, we report the use of an algorithm to detect anomalous QM computations (outliers) that can affect the overall shape and uncertainty of the NEA spectra. Finally, we apply GMM-NEA to predict the photolysis rate for HgBrOOH, a compound involved in Earth's atmospheric chemistry." @default.
- W4225096970 created "2022-04-30" @default.
- W4225096970 creator A5083182974 @default.
- W4225096970 creator A5086192364 @default.
- W4225096970 date "2022-04-28" @default.
- W4225096970 modified "2023-10-18" @default.
- W4225096970 title "Reconstruction of Nuclear Ensemble Approach Electronic Spectra Using Probabilistic Machine Learning" @default.
- W4225096970 cites W1528177290 @default.
- W4225096970 cites W1974709252 @default.
- W4225096970 cites W1990157832 @default.
- W4225096970 cites W2003914646 @default.
- W4225096970 cites W2006537377 @default.
- W4225096970 cites W2015581759 @default.
- W4225096970 cites W2056152520 @default.
- W4225096970 cites W2080230024 @default.
- W4225096970 cites W2084617519 @default.
- W4225096970 cites W2100319456 @default.
- W4225096970 cites W2120886788 @default.
- W4225096970 cites W2122646361 @default.
- W4225096970 cites W2315646680 @default.
- W4225096970 cites W2338155455 @default.
- W4225096970 cites W2519132385 @default.
- W4225096970 cites W2527189750 @default.
- W4225096970 cites W2588888327 @default.
- W4225096970 cites W2601973214 @default.
- W4225096970 cites W2615324714 @default.
- W4225096970 cites W2615653671 @default.
- W4225096970 cites W2738488712 @default.
- W4225096970 cites W2765504070 @default.
- W4225096970 cites W2778051509 @default.
- W4225096970 cites W2787137189 @default.
- W4225096970 cites W2787894218 @default.
- W4225096970 cites W2801599772 @default.
- W4225096970 cites W2900313138 @default.
- W4225096970 cites W2902448490 @default.
- W4225096970 cites W2943480485 @default.
- W4225096970 cites W2949292701 @default.
- W4225096970 cites W2951646322 @default.
- W4225096970 cites W2951981744 @default.
- W4225096970 cites W2982668911 @default.
- W4225096970 cites W2996697878 @default.
- W4225096970 cites W3006607755 @default.
- W4225096970 cites W3035761520 @default.
- W4225096970 cites W3041769782 @default.
- W4225096970 cites W3046587862 @default.
- W4225096970 cites W3047841860 @default.
- W4225096970 cites W3049330112 @default.
- W4225096970 cites W3087420913 @default.
- W4225096970 cites W3093686881 @default.
- W4225096970 cites W3098891640 @default.
- W4225096970 cites W3101706855 @default.
- W4225096970 cites W3106889297 @default.
- W4225096970 cites W3160818551 @default.
- W4225096970 cites W3160880127 @default.
- W4225096970 cites W3166750251 @default.
- W4225096970 cites W3167446424 @default.
- W4225096970 cites W3199848271 @default.
- W4225096970 cites W3200227170 @default.
- W4225096970 cites W4235051201 @default.
- W4225096970 doi "https://doi.org/10.1021/acs.jctc.2c00004" @default.
- W4225096970 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35481363" @default.
- W4225096970 hasPublicationYear "2022" @default.
- W4225096970 type Work @default.
- W4225096970 citedByCount "5" @default.
- W4225096970 countsByYear W42250969702023 @default.
- W4225096970 crossrefType "journal-article" @default.
- W4225096970 hasAuthorship W4225096970A5083182974 @default.
- W4225096970 hasAuthorship W4225096970A5086192364 @default.
- W4225096970 hasBestOaLocation W42250969701 @default.
- W4225096970 hasConcept C11413529 @default.
- W4225096970 hasConcept C119857082 @default.
- W4225096970 hasConcept C121332964 @default.
- W4225096970 hasConcept C121864883 @default.
- W4225096970 hasConcept C153180895 @default.
- W4225096970 hasConcept C154945302 @default.
- W4225096970 hasConcept C31972630 @default.
- W4225096970 hasConcept C3770464 @default.
- W4225096970 hasConcept C41008148 @default.
- W4225096970 hasConcept C45374587 @default.
- W4225096970 hasConcept C4839761 @default.
- W4225096970 hasConcept C49937458 @default.
- W4225096970 hasConcept C61224824 @default.
- W4225096970 hasConcept C62520636 @default.
- W4225096970 hasConcept C79337645 @default.
- W4225096970 hasConceptScore W4225096970C11413529 @default.
- W4225096970 hasConceptScore W4225096970C119857082 @default.
- W4225096970 hasConceptScore W4225096970C121332964 @default.
- W4225096970 hasConceptScore W4225096970C121864883 @default.
- W4225096970 hasConceptScore W4225096970C153180895 @default.
- W4225096970 hasConceptScore W4225096970C154945302 @default.
- W4225096970 hasConceptScore W4225096970C31972630 @default.
- W4225096970 hasConceptScore W4225096970C3770464 @default.
- W4225096970 hasConceptScore W4225096970C41008148 @default.
- W4225096970 hasConceptScore W4225096970C45374587 @default.
- W4225096970 hasConceptScore W4225096970C4839761 @default.
- W4225096970 hasConceptScore W4225096970C49937458 @default.
- W4225096970 hasConceptScore W4225096970C61224824 @default.
- W4225096970 hasConceptScore W4225096970C62520636 @default.