Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225103617> ?p ?o ?g. }
- W4225103617 abstract "Making time estimates, such as how long a given task might take, frequently leads to inaccurate predictions because of an optimistic bias. Previous attempts to alleviate this bias, including decomposing the task into smaller components and listing potential surprises, have not shown any major improvement. This article builds on the premise that these procedures may have failed because they involve compound probabilities and mixture distributions which are difficult to compute in one’s head. We hypothesize that predictive visualizations of such distributions would facilitate the estimation of task durations. We conducted a crowdsourced study in which 145 participants provided different estimates of overall and sub-task durations and we used these to generate predictive visualizations of the resulting mixture distributions. We compared participants’ initial estimates with their updated ones and found compelling evidence that predictive visualizations encourage less optimistic estimates." @default.
- W4225103617 created "2022-04-30" @default.
- W4225103617 creator A5068973572 @default.
- W4225103617 creator A5074985413 @default.
- W4225103617 date "2022-04-27" @default.
- W4225103617 modified "2023-10-18" @default.
- W4225103617 title "Do You See What You Mean? Using Predictive Visualizations to Reduce Optimism in Duration Estimates" @default.
- W4225103617 cites W1592632004 @default.
- W4225103617 cites W1817172274 @default.
- W4225103617 cites W1967992372 @default.
- W4225103617 cites W1972641242 @default.
- W4225103617 cites W1996766349 @default.
- W4225103617 cites W2000382672 @default.
- W4225103617 cites W2014577670 @default.
- W4225103617 cites W2033691722 @default.
- W4225103617 cites W2043380925 @default.
- W4225103617 cites W2044222306 @default.
- W4225103617 cites W2044714668 @default.
- W4225103617 cites W2047878939 @default.
- W4225103617 cites W2051117613 @default.
- W4225103617 cites W2051411313 @default.
- W4225103617 cites W2051608771 @default.
- W4225103617 cites W2054821576 @default.
- W4225103617 cites W2057619208 @default.
- W4225103617 cites W2058124204 @default.
- W4225103617 cites W2061408575 @default.
- W4225103617 cites W2064073831 @default.
- W4225103617 cites W2066431640 @default.
- W4225103617 cites W2069228960 @default.
- W4225103617 cites W2070664725 @default.
- W4225103617 cites W2082381011 @default.
- W4225103617 cites W2084087275 @default.
- W4225103617 cites W2085103832 @default.
- W4225103617 cites W2085677414 @default.
- W4225103617 cites W2094856403 @default.
- W4225103617 cites W2096452841 @default.
- W4225103617 cites W2099148141 @default.
- W4225103617 cites W2100926588 @default.
- W4225103617 cites W2122060742 @default.
- W4225103617 cites W2166667242 @default.
- W4225103617 cites W2166927315 @default.
- W4225103617 cites W2215157235 @default.
- W4225103617 cites W2294831722 @default.
- W4225103617 cites W2398344594 @default.
- W4225103617 cites W2426479609 @default.
- W4225103617 cites W2537056343 @default.
- W4225103617 cites W2613289252 @default.
- W4225103617 cites W2731697107 @default.
- W4225103617 cites W2752648449 @default.
- W4225103617 cites W2754613478 @default.
- W4225103617 cites W2795973510 @default.
- W4225103617 cites W2799246381 @default.
- W4225103617 cites W2906194767 @default.
- W4225103617 cites W2906942504 @default.
- W4225103617 cites W2911589237 @default.
- W4225103617 cites W3024021416 @default.
- W4225103617 cites W3092487423 @default.
- W4225103617 cites W3092585760 @default.
- W4225103617 cites W3125071386 @default.
- W4225103617 cites W4248516174 @default.
- W4225103617 doi "https://doi.org/10.1145/3491102.3502010" @default.
- W4225103617 hasPublicationYear "2022" @default.
- W4225103617 type Work @default.
- W4225103617 citedByCount "1" @default.
- W4225103617 countsByYear W42251036172023 @default.
- W4225103617 crossrefType "proceedings-article" @default.
- W4225103617 hasAuthorship W4225103617A5068973572 @default.
- W4225103617 hasAuthorship W4225103617A5074985413 @default.
- W4225103617 hasBestOaLocation W42251036171 @default.
- W4225103617 hasConcept C105795698 @default.
- W4225103617 hasConcept C111472728 @default.
- W4225103617 hasConcept C112758219 @default.
- W4225103617 hasConcept C119857082 @default.
- W4225103617 hasConcept C124952713 @default.
- W4225103617 hasConcept C138885662 @default.
- W4225103617 hasConcept C142362112 @default.
- W4225103617 hasConcept C149782125 @default.
- W4225103617 hasConcept C154945302 @default.
- W4225103617 hasConcept C15744967 @default.
- W4225103617 hasConcept C162324750 @default.
- W4225103617 hasConcept C187736073 @default.
- W4225103617 hasConcept C204017024 @default.
- W4225103617 hasConcept C2778023277 @default.
- W4225103617 hasConcept C2778136018 @default.
- W4225103617 hasConcept C2780451532 @default.
- W4225103617 hasConcept C33923547 @default.
- W4225103617 hasConcept C41008148 @default.
- W4225103617 hasConcept C41895202 @default.
- W4225103617 hasConcept C77805123 @default.
- W4225103617 hasConceptScore W4225103617C105795698 @default.
- W4225103617 hasConceptScore W4225103617C111472728 @default.
- W4225103617 hasConceptScore W4225103617C112758219 @default.
- W4225103617 hasConceptScore W4225103617C119857082 @default.
- W4225103617 hasConceptScore W4225103617C124952713 @default.
- W4225103617 hasConceptScore W4225103617C138885662 @default.
- W4225103617 hasConceptScore W4225103617C142362112 @default.
- W4225103617 hasConceptScore W4225103617C149782125 @default.
- W4225103617 hasConceptScore W4225103617C154945302 @default.
- W4225103617 hasConceptScore W4225103617C15744967 @default.
- W4225103617 hasConceptScore W4225103617C162324750 @default.