Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225113818> ?p ?o ?g. }
- W4225113818 abstract "Abstract Attention allows us to select relevant and ignore irrelevant information from our complex environments. What happens when attention shifts from one item to another? To answer this question, it is critical to have tools that accurately recover neural representations of both feature and location information with high temporal resolution. In the current study, we used human electroencephalography (EEG) and machine learning to explore how neural representations of object features and locations update across dynamic shifts of attention. We demonstrate that EEG can be used to create simultaneous timecourses of neural representations of attended features (timepoint-by-timepoint inverted encoding model reconstructions) and attended location (timepoint-by-timepoint decoding) during both stable periods and across dynamic shifts of attention. Each trial presented two oriented gratings that flickered at the same frequency but had different orientations; participants were cued to attend one of them, and on half of trials received a shift cue mid-trial. We trained models on a stable period from Hold attention trials, and then reconstructed/decoded the attended orientation/location at each timepoint on Shift attention trials. Our results showed that both feature reconstruction and location decoding dynamically track the shift of attention, and that there may be timepoints during the shifting of attention when (1) feature and location representations become uncoupled, and (2) both the previously-attended and currently-attended orientations are represented with roughly equal strength. The results offer insight into our understanding of attentional shifts, and the noninvasive techniques developed in the current study lend themselves well to a wide variety of future applications. Open Practice Statement The data and analysis code will be made publicly available on the Open Science Framework (link to be updated upon publication). New & Noteworthy We used human EEG and machine learning to reconstruct neural response profiles during dynamic shifts of attention. Specifically, we demonstrated that we could simultaneously read out both location and feature information from an attended item in a multi-stimulus display. Moreover, we examined how that readout evolves over time during the dynamic process of attentional shifts. These results provide insight into our understanding of attention, and this technique carries substantial potential for versatile extensions and applications." @default.
- W4225113818 created "2022-05-01" @default.
- W4225113818 creator A5044350954 @default.
- W4225113818 creator A5058523943 @default.
- W4225113818 date "2022-04-27" @default.
- W4225113818 modified "2023-10-16" @default.
- W4225113818 title "Dynamic neural reconstructions of attended object location and features using EEG" @default.
- W4225113818 cites W1471987902 @default.
- W4225113818 cites W1708732123 @default.
- W4225113818 cites W1745458420 @default.
- W4225113818 cites W1967465676 @default.
- W4225113818 cites W1968001820 @default.
- W4225113818 cites W1968867925 @default.
- W4225113818 cites W1970035031 @default.
- W4225113818 cites W1971300091 @default.
- W4225113818 cites W1974598846 @default.
- W4225113818 cites W1975700137 @default.
- W4225113818 cites W1978077482 @default.
- W4225113818 cites W1978885917 @default.
- W4225113818 cites W1991630384 @default.
- W4225113818 cites W1996558265 @default.
- W4225113818 cites W1997809835 @default.
- W4225113818 cites W1999567494 @default.
- W4225113818 cites W2000990152 @default.
- W4225113818 cites W2012572768 @default.
- W4225113818 cites W2013588842 @default.
- W4225113818 cites W2016966354 @default.
- W4225113818 cites W2017108196 @default.
- W4225113818 cites W2019370496 @default.
- W4225113818 cites W2028318424 @default.
- W4225113818 cites W2036084760 @default.
- W4225113818 cites W2040391279 @default.
- W4225113818 cites W2049236887 @default.
- W4225113818 cites W2052681424 @default.
- W4225113818 cites W2062752322 @default.
- W4225113818 cites W2063951486 @default.
- W4225113818 cites W2065570833 @default.
- W4225113818 cites W2069674721 @default.
- W4225113818 cites W2074394981 @default.
- W4225113818 cites W2081136143 @default.
- W4225113818 cites W2081925003 @default.
- W4225113818 cites W2083960328 @default.
- W4225113818 cites W2092398395 @default.
- W4225113818 cites W2093353037 @default.
- W4225113818 cites W2095380628 @default.
- W4225113818 cites W2096955942 @default.
- W4225113818 cites W2097316753 @default.
- W4225113818 cites W2098445954 @default.
- W4225113818 cites W2099467758 @default.
- W4225113818 cites W2100022164 @default.
- W4225113818 cites W2100831964 @default.
- W4225113818 cites W2105289636 @default.
- W4225113818 cites W2110004800 @default.
- W4225113818 cites W2111730008 @default.
- W4225113818 cites W2111990464 @default.
- W4225113818 cites W2112845172 @default.
- W4225113818 cites W2118615399 @default.
- W4225113818 cites W2118852700 @default.
- W4225113818 cites W2119101994 @default.
- W4225113818 cites W2120435942 @default.
- W4225113818 cites W2121449541 @default.
- W4225113818 cites W2122387884 @default.
- W4225113818 cites W2123923307 @default.
- W4225113818 cites W2123927491 @default.
- W4225113818 cites W2124393111 @default.
- W4225113818 cites W2128495200 @default.
- W4225113818 cites W2129419038 @default.
- W4225113818 cites W2129471288 @default.
- W4225113818 cites W2135894974 @default.
- W4225113818 cites W2137689618 @default.
- W4225113818 cites W2138777200 @default.
- W4225113818 cites W2143369952 @default.
- W4225113818 cites W2143938305 @default.
- W4225113818 cites W2149095485 @default.
- W4225113818 cites W2149194912 @default.
- W4225113818 cites W2155241481 @default.
- W4225113818 cites W2159353177 @default.
- W4225113818 cites W2159654758 @default.
- W4225113818 cites W2162095066 @default.
- W4225113818 cites W2166233633 @default.
- W4225113818 cites W2167422691 @default.
- W4225113818 cites W2303682922 @default.
- W4225113818 cites W2324997639 @default.
- W4225113818 cites W2422630394 @default.
- W4225113818 cites W2500919575 @default.
- W4225113818 cites W2566500292 @default.
- W4225113818 cites W2618077307 @default.
- W4225113818 cites W2766880576 @default.
- W4225113818 cites W2799703401 @default.
- W4225113818 cites W2801094235 @default.
- W4225113818 cites W2802545476 @default.
- W4225113818 cites W2913513925 @default.
- W4225113818 cites W2926844698 @default.
- W4225113818 cites W2951787134 @default.
- W4225113818 cites W2952284517 @default.
- W4225113818 cites W2958132570 @default.
- W4225113818 cites W3037812036 @default.
- W4225113818 cites W3047462397 @default.
- W4225113818 cites W3097069580 @default.
- W4225113818 cites W3120211142 @default.