Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225114049> ?p ?o ?g. }
- W4225114049 endingPage "4521" @default.
- W4225114049 startingPage "4521" @default.
- W4225114049 abstract "Connected vehicles in vehicular networks will lead to a smart and autonomous transportation system. These vehicles have a large number of applications that require wireless connectivity by using cellular vehicle-to-everything (C-V2X). The infrastructure of C-V2X comprises multiple roadside units (RSUs) that provide direct connectivity with the on-road vehicles. Vehicular traffic applications are mainly categorized into three major groups such as emergency response traffic, traffic management and infotainment traffic. Vehicles have limited processing capabilities and are unable to process all tasks simultaneously. To process these offloaded tasks in a short time, fog servers are placed near the RSUs. However, it is sometimes not possible for the fog computing server to process all offloaded tasks. In this work, a utility function for the RSU to process these offloaded tasks is designed. In addition, a knapsack-based task scheduling algorithm is proposed to optimally process the offloaded tasks. The results show that the proposed scheme helps fog nodes to optimally scrutinize the high-priority offloaded tasks for task execution resulting in more than 98% of emergency tasks beingprocessed by fog computing nodes." @default.
- W4225114049 created "2022-05-01" @default.
- W4225114049 creator A5033753185 @default.
- W4225114049 creator A5048619460 @default.
- W4225114049 creator A5054250222 @default.
- W4225114049 creator A5060010458 @default.
- W4225114049 creator A5062772547 @default.
- W4225114049 creator A5077568501 @default.
- W4225114049 creator A5085398382 @default.
- W4225114049 date "2022-04-29" @default.
- W4225114049 modified "2023-10-03" @default.
- W4225114049 title "Intelligent Task Offloading in Fog Computing Based Vehicular Networks" @default.
- W4225114049 cites W2789893592 @default.
- W4225114049 cites W2790478256 @default.
- W4225114049 cites W2900346429 @default.
- W4225114049 cites W2907688180 @default.
- W4225114049 cites W2909988895 @default.
- W4225114049 cites W2916889275 @default.
- W4225114049 cites W2918819051 @default.
- W4225114049 cites W2942716522 @default.
- W4225114049 cites W2944464036 @default.
- W4225114049 cites W2963775970 @default.
- W4225114049 cites W2964221923 @default.
- W4225114049 cites W2965729147 @default.
- W4225114049 cites W2969284583 @default.
- W4225114049 cites W2987190436 @default.
- W4225114049 cites W2993809815 @default.
- W4225114049 cites W3000652959 @default.
- W4225114049 cites W3003346777 @default.
- W4225114049 cites W3005620403 @default.
- W4225114049 cites W3006499985 @default.
- W4225114049 cites W3012949927 @default.
- W4225114049 cites W3021462936 @default.
- W4225114049 cites W3023867911 @default.
- W4225114049 cites W3037931769 @default.
- W4225114049 cites W3088416892 @default.
- W4225114049 cites W3091074232 @default.
- W4225114049 cites W3105199275 @default.
- W4225114049 cites W3115666762 @default.
- W4225114049 cites W3118476199 @default.
- W4225114049 cites W3126675331 @default.
- W4225114049 cites W3136794940 @default.
- W4225114049 cites W3159124102 @default.
- W4225114049 cites W3164621512 @default.
- W4225114049 cites W3172803077 @default.
- W4225114049 cites W3172828243 @default.
- W4225114049 cites W3180501244 @default.
- W4225114049 cites W3192467663 @default.
- W4225114049 cites W3192851990 @default.
- W4225114049 cites W3194459689 @default.
- W4225114049 cites W3200411696 @default.
- W4225114049 cites W3202281568 @default.
- W4225114049 doi "https://doi.org/10.3390/app12094521" @default.
- W4225114049 hasPublicationYear "2022" @default.
- W4225114049 type Work @default.
- W4225114049 citedByCount "6" @default.
- W4225114049 countsByYear W42251140492022 @default.
- W4225114049 countsByYear W42251140492023 @default.
- W4225114049 crossrefType "journal-article" @default.
- W4225114049 hasAuthorship W4225114049A5033753185 @default.
- W4225114049 hasAuthorship W4225114049A5048619460 @default.
- W4225114049 hasAuthorship W4225114049A5054250222 @default.
- W4225114049 hasAuthorship W4225114049A5060010458 @default.
- W4225114049 hasAuthorship W4225114049A5062772547 @default.
- W4225114049 hasAuthorship W4225114049A5077568501 @default.
- W4225114049 hasAuthorship W4225114049A5085398382 @default.
- W4225114049 hasBestOaLocation W42251140491 @default.
- W4225114049 hasConcept C111919701 @default.
- W4225114049 hasConcept C120314980 @default.
- W4225114049 hasConcept C127413603 @default.
- W4225114049 hasConcept C149635348 @default.
- W4225114049 hasConcept C201995342 @default.
- W4225114049 hasConcept C206729178 @default.
- W4225114049 hasConcept C21547014 @default.
- W4225114049 hasConcept C22212356 @default.
- W4225114049 hasConcept C2780451532 @default.
- W4225114049 hasConcept C2986652147 @default.
- W4225114049 hasConcept C31258907 @default.
- W4225114049 hasConcept C41008148 @default.
- W4225114049 hasConcept C47796450 @default.
- W4225114049 hasConcept C555944384 @default.
- W4225114049 hasConcept C79403827 @default.
- W4225114049 hasConcept C81860439 @default.
- W4225114049 hasConcept C93996380 @default.
- W4225114049 hasConcept C98045186 @default.
- W4225114049 hasConceptScore W4225114049C111919701 @default.
- W4225114049 hasConceptScore W4225114049C120314980 @default.
- W4225114049 hasConceptScore W4225114049C127413603 @default.
- W4225114049 hasConceptScore W4225114049C149635348 @default.
- W4225114049 hasConceptScore W4225114049C201995342 @default.
- W4225114049 hasConceptScore W4225114049C206729178 @default.
- W4225114049 hasConceptScore W4225114049C21547014 @default.
- W4225114049 hasConceptScore W4225114049C22212356 @default.
- W4225114049 hasConceptScore W4225114049C2780451532 @default.
- W4225114049 hasConceptScore W4225114049C2986652147 @default.
- W4225114049 hasConceptScore W4225114049C31258907 @default.
- W4225114049 hasConceptScore W4225114049C41008148 @default.
- W4225114049 hasConceptScore W4225114049C47796450 @default.