Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225114460> ?p ?o ?g. }
- W4225114460 endingPage "17" @default.
- W4225114460 startingPage "1" @default.
- W4225114460 abstract "The so-called Fourth Paradigm has witnessed a boom during the past two decades, with large volumes of observational data becoming available to scientists and engineers. Big data is characterized by the rule of the five Vs: Volume, Variety, Value, Velocity and Veracity. The concept of big data naturally matches well with the features of geoengineering and geoscience. Large-scale, comprehensive, multidirectional and multifield geotechnical data analysis is becoming a trend. On the other hand, Machine learning (ML), Deep Learning (DL) and Optimization Algorithm (OA) provide the ability to learn from data and deliver in-depth insight into geotechnical problems. Researchers use different ML, DL and OA models to solve various problems associated with geoengineering and geoscience. Consequently, there is a need to extend its research with big data research through integrating the use of ML, DL and OA techniques. This work focuses on a systematic review on the state-of-the-art application of ML, DL and OA algorithms in geoengineering and geoscience. Various ML, DL, and OA approaches are firstly concisely introduced, concerning mainly the supervised learning, unsupervised learning, deep learning and optimization algorithms. Then their representative applications in the geoengineering and geoscience are summarized via VOSviewer demonstration. The authors also provided their own thoughts learnt from these applications as well as work ongoing and future recommendations. This review paper aims to make a comprehensive summary and provide fundamental guidelines for researchers and engineers in the discipline of geoengineering and geoscience or similar research areas on how to integrate and apply ML, DL and OA methods." @default.
- W4225114460 created "2022-05-01" @default.
- W4225114460 creator A5017851336 @default.
- W4225114460 creator A5022504089 @default.
- W4225114460 creator A5049723273 @default.
- W4225114460 creator A5074424543 @default.
- W4225114460 creator A5076345724 @default.
- W4225114460 creator A5082268488 @default.
- W4225114460 date "2022-09-01" @default.
- W4225114460 modified "2023-10-18" @default.
- W4225114460 title "Application of machine learning, deep learning and optimization algorithms in geoengineering and geoscience: Comprehensive review and future challenge" @default.
- W4225114460 cites W1523741643 @default.
- W4225114460 cites W1595159159 @default.
- W4225114460 cites W1659842140 @default.
- W4225114460 cites W1966394852 @default.
- W4225114460 cites W1975645372 @default.
- W4225114460 cites W1977064421 @default.
- W4225114460 cites W1996596366 @default.
- W4225114460 cites W2016383277 @default.
- W4225114460 cites W2029846254 @default.
- W4225114460 cites W2046913730 @default.
- W4225114460 cites W2060611243 @default.
- W4225114460 cites W2061438946 @default.
- W4225114460 cites W2064675550 @default.
- W4225114460 cites W2067161939 @default.
- W4225114460 cites W2068317494 @default.
- W4225114460 cites W2069663777 @default.
- W4225114460 cites W2106905228 @default.
- W4225114460 cites W2119382413 @default.
- W4225114460 cites W2122821937 @default.
- W4225114460 cites W2124823351 @default.
- W4225114460 cites W2150220236 @default.
- W4225114460 cites W2154929945 @default.
- W4225114460 cites W2166220592 @default.
- W4225114460 cites W2290883490 @default.
- W4225114460 cites W2553852618 @default.
- W4225114460 cites W2788620276 @default.
- W4225114460 cites W2913323966 @default.
- W4225114460 cites W2919115771 @default.
- W4225114460 cites W2941082616 @default.
- W4225114460 cites W2956480213 @default.
- W4225114460 cites W2957449316 @default.
- W4225114460 cites W2975035925 @default.
- W4225114460 cites W2989704899 @default.
- W4225114460 cites W2999959301 @default.
- W4225114460 cites W3006558576 @default.
- W4225114460 cites W3007816895 @default.
- W4225114460 cites W3014583151 @default.
- W4225114460 cites W3021941048 @default.
- W4225114460 cites W3087676330 @default.
- W4225114460 cites W3090035754 @default.
- W4225114460 cites W3093086304 @default.
- W4225114460 cites W3117607440 @default.
- W4225114460 cites W3136165809 @default.
- W4225114460 cites W4225123176 @default.
- W4225114460 doi "https://doi.org/10.1016/j.gr.2022.03.015" @default.
- W4225114460 hasPublicationYear "2022" @default.
- W4225114460 type Work @default.
- W4225114460 citedByCount "80" @default.
- W4225114460 countsByYear W42251144602022 @default.
- W4225114460 countsByYear W42251144602023 @default.
- W4225114460 crossrefType "journal-article" @default.
- W4225114460 hasAuthorship W4225114460A5017851336 @default.
- W4225114460 hasAuthorship W4225114460A5022504089 @default.
- W4225114460 hasAuthorship W4225114460A5049723273 @default.
- W4225114460 hasAuthorship W4225114460A5074424543 @default.
- W4225114460 hasAuthorship W4225114460A5076345724 @default.
- W4225114460 hasAuthorship W4225114460A5082268488 @default.
- W4225114460 hasConcept C108583219 @default.
- W4225114460 hasConcept C111368507 @default.
- W4225114460 hasConcept C11413529 @default.
- W4225114460 hasConcept C119857082 @default.
- W4225114460 hasConcept C121332964 @default.
- W4225114460 hasConcept C124101348 @default.
- W4225114460 hasConcept C127313418 @default.
- W4225114460 hasConcept C132651083 @default.
- W4225114460 hasConcept C136197465 @default.
- W4225114460 hasConcept C141441539 @default.
- W4225114460 hasConcept C154945302 @default.
- W4225114460 hasConcept C1965285 @default.
- W4225114460 hasConcept C2522767166 @default.
- W4225114460 hasConcept C2778755073 @default.
- W4225114460 hasConcept C41008148 @default.
- W4225114460 hasConcept C537773303 @default.
- W4225114460 hasConcept C62520636 @default.
- W4225114460 hasConcept C75684735 @default.
- W4225114460 hasConceptScore W4225114460C108583219 @default.
- W4225114460 hasConceptScore W4225114460C111368507 @default.
- W4225114460 hasConceptScore W4225114460C11413529 @default.
- W4225114460 hasConceptScore W4225114460C119857082 @default.
- W4225114460 hasConceptScore W4225114460C121332964 @default.
- W4225114460 hasConceptScore W4225114460C124101348 @default.
- W4225114460 hasConceptScore W4225114460C127313418 @default.
- W4225114460 hasConceptScore W4225114460C132651083 @default.
- W4225114460 hasConceptScore W4225114460C136197465 @default.
- W4225114460 hasConceptScore W4225114460C141441539 @default.
- W4225114460 hasConceptScore W4225114460C154945302 @default.
- W4225114460 hasConceptScore W4225114460C1965285 @default.