Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225117607> ?p ?o ?g. }
- W4225117607 endingPage "2063" @default.
- W4225117607 startingPage "2045" @default.
- W4225117607 abstract "Based on more than 280,000 newspaper articles published in North America, this study proposes an integrative machine learning framework to explore heterogeneous social sentiments over time. After retrieving and preprocessing articles containing the term “Chinese” from six mainstream newspapers, we identified major discussion topics and assigned articles to their corresponding topics via posterior probabilities estimated by using a novel Bayesian nonparametric model, the hierarchical Dirichlet process. We also employed a groundbreaking deep learning technique, bidirectional encoder representations from transformers, to assign a negative or positive sentiment score to each newspaper article, which was trained on binary-labeled movie reviews from the Internet Movie Database (IMDb). By combining state-of-the-art tools for topic modeling and sentiment analysis, we found an overall lack of consensus on whether sentiments in North America since 1978 were pro- or anti-Chinese. Moreover, the images of Chinese are highly topic specific: (1) sentiments across different topics show distinct trajectories over the period of study; (2) discussion topics explain much more of the variation in sentiments than do the publisher, year of publication, or country of publisher; (3) less positive sentiments appear to be more relevant to material concerns than to ethnic considerations, whereas more positive sentiments are associated with an appreciation of culture; and (4) sentiments on the same or similar topic might exhibit different temporal patterns in the United States and Canada. These new findings not only suggest a multifaceted and dynamic view of social sentiments in a transnational context but also call for a paradigm shift in understanding intertwined sociodiscursive interactions over time." @default.
- W4225117607 created "2022-05-01" @default.
- W4225117607 creator A5016055499 @default.
- W4225117607 creator A5017061047 @default.
- W4225117607 creator A5037110618 @default.
- W4225117607 creator A5052671723 @default.
- W4225117607 date "2022-04-29" @default.
- W4225117607 modified "2023-10-15" @default.
- W4225117607 title "Sleeping Lion or Sick Man? Machine Learning Approaches to Deciphering Heterogeneous Images of Chinese in North America" @default.
- W4225117607 cites W141534777 @default.
- W4225117607 cites W1498677939 @default.
- W4225117607 cites W1599428327 @default.
- W4225117607 cites W1966426070 @default.
- W4225117607 cites W1968982366 @default.
- W4225117607 cites W1973706306 @default.
- W4225117607 cites W1976687696 @default.
- W4225117607 cites W1977588591 @default.
- W4225117607 cites W1982864851 @default.
- W4225117607 cites W1982949454 @default.
- W4225117607 cites W1987737300 @default.
- W4225117607 cites W1998252426 @default.
- W4225117607 cites W2006561278 @default.
- W4225117607 cites W2010070509 @default.
- W4225117607 cites W2022673842 @default.
- W4225117607 cites W2041853571 @default.
- W4225117607 cites W2044280007 @default.
- W4225117607 cites W2066394586 @default.
- W4225117607 cites W2073700701 @default.
- W4225117607 cites W2077233185 @default.
- W4225117607 cites W2104191959 @default.
- W4225117607 cites W2117667023 @default.
- W4225117607 cites W2120778175 @default.
- W4225117607 cites W2136414695 @default.
- W4225117607 cites W2139415103 @default.
- W4225117607 cites W2145828746 @default.
- W4225117607 cites W2158266063 @default.
- W4225117607 cites W2158997610 @default.
- W4225117607 cites W2191575205 @default.
- W4225117607 cites W2246281786 @default.
- W4225117607 cites W2316547091 @default.
- W4225117607 cites W2326074215 @default.
- W4225117607 cites W2330929612 @default.
- W4225117607 cites W2331203381 @default.
- W4225117607 cites W2550657514 @default.
- W4225117607 cites W2604990514 @default.
- W4225117607 cites W2616446878 @default.
- W4225117607 cites W2619244292 @default.
- W4225117607 cites W2741445211 @default.
- W4225117607 cites W2761527807 @default.
- W4225117607 cites W2783676487 @default.
- W4225117607 cites W2789679082 @default.
- W4225117607 cites W2803135671 @default.
- W4225117607 cites W2807818694 @default.
- W4225117607 cites W2920807332 @default.
- W4225117607 cites W2962739339 @default.
- W4225117607 cites W2972324944 @default.
- W4225117607 cites W2982397382 @default.
- W4225117607 cites W3113091126 @default.
- W4225117607 cites W3122031823 @default.
- W4225117607 cites W3125182500 @default.
- W4225117607 cites W3173209261 @default.
- W4225117607 cites W4206979272 @default.
- W4225117607 cites W4213429631 @default.
- W4225117607 cites W4213456678 @default.
- W4225117607 cites W4229974549 @default.
- W4225117607 cites W4234600910 @default.
- W4225117607 cites W4236439031 @default.
- W4225117607 cites W4237791300 @default.
- W4225117607 cites W4238901600 @default.
- W4225117607 cites W4241492534 @default.
- W4225117607 cites W4246082868 @default.
- W4225117607 cites W4247868994 @default.
- W4225117607 cites W4300199678 @default.
- W4225117607 cites W4301056702 @default.
- W4225117607 cites W432855370 @default.
- W4225117607 cites W2903155757 @default.
- W4225117607 doi "https://doi.org/10.1080/24694452.2022.2042180" @default.
- W4225117607 hasPublicationYear "2022" @default.
- W4225117607 type Work @default.
- W4225117607 citedByCount "0" @default.
- W4225117607 crossrefType "journal-article" @default.
- W4225117607 hasAuthorship W4225117607A5016055499 @default.
- W4225117607 hasAuthorship W4225117607A5017061047 @default.
- W4225117607 hasAuthorship W4225117607A5037110618 @default.
- W4225117607 hasAuthorship W4225117607A5052671723 @default.
- W4225117607 hasConcept C100279451 @default.
- W4225117607 hasConcept C136764020 @default.
- W4225117607 hasConcept C137293760 @default.
- W4225117607 hasConcept C144024400 @default.
- W4225117607 hasConcept C154945302 @default.
- W4225117607 hasConcept C166957645 @default.
- W4225117607 hasConcept C171686336 @default.
- W4225117607 hasConcept C17744445 @default.
- W4225117607 hasConcept C199539241 @default.
- W4225117607 hasConcept C201280247 @default.
- W4225117607 hasConcept C2777617010 @default.
- W4225117607 hasConcept C2779343474 @default.
- W4225117607 hasConcept C29595303 @default.