Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225120216> ?p ?o ?g. }
- W4225120216 endingPage "57" @default.
- W4225120216 startingPage "36" @default.
- W4225120216 abstract "Severe Coronavirus Disease 2019 (COVID-19) has been a global pandemic which provokes massive devastation to the society, economy, and culture since January 2020. The pandemic demonstrates the inefficiency of superannuated manual detection approaches and inspires novel approaches that detect COVID-19 by classifying chest x-ray (CXR) images with deep learning technology. Although a wide range of researches about bran-new COVID-19 detection methods that classify CXR images with centralized convolutional neural network (CNN) models have been proposed, the latency, privacy, and cost of information transmission between the data resources and the centralized data center will make the detection inefficient. Hence, in this article, a COVID-19 detection scheme via CXR images classification with a lightweight CNN model called MobileNet in edge computing is proposed to alleviate the computing pressure of centralized data center and ameliorate detection efficiency. Specifically, the general framework is introduced first to manifest the overall arrangement of the computing and information services ecosystem. Then, an unsupervised model DCGAN is employed to make up for the small scale of data set. Moreover, the implementation of the MobileNet for CXR images classification is presented at great length. The specific distribution strategy of MobileNet models is followed. The extensive evaluations of the experiments demonstrate the efficiency and accuracy of the proposed scheme for detecting COVID-19 over CXR images in edge computing." @default.
- W4225120216 created "2022-05-01" @default.
- W4225120216 creator A5022028229 @default.
- W4225120216 creator A5055379843 @default.
- W4225120216 creator A5073668152 @default.
- W4225120216 creator A5078100598 @default.
- W4225120216 creator A5078501534 @default.
- W4225120216 date "2022-04-30" @default.
- W4225120216 modified "2023-10-17" @default.
- W4225120216 title "Real‐time COVID‐19 detection over chest x‐ray images in edge computing" @default.
- W4225120216 cites W2529345806 @default.
- W4225120216 cites W2605045867 @default.
- W4225120216 cites W2666784499 @default.
- W4225120216 cites W2741785014 @default.
- W4225120216 cites W2780046032 @default.
- W4225120216 cites W2794167658 @default.
- W4225120216 cites W2799349785 @default.
- W4225120216 cites W2806118840 @default.
- W4225120216 cites W2898782216 @default.
- W4225120216 cites W2917527151 @default.
- W4225120216 cites W2963163009 @default.
- W4225120216 cites W2963426391 @default.
- W4225120216 cites W2974367370 @default.
- W4225120216 cites W2976124544 @default.
- W4225120216 cites W2982083293 @default.
- W4225120216 cites W2984128863 @default.
- W4225120216 cites W2986349107 @default.
- W4225120216 cites W2986713830 @default.
- W4225120216 cites W3000999545 @default.
- W4225120216 cites W3006834170 @default.
- W4225120216 cites W3010698037 @default.
- W4225120216 cites W3012421327 @default.
- W4225120216 cites W3013130152 @default.
- W4225120216 cites W3013640245 @default.
- W4225120216 cites W3016022677 @default.
- W4225120216 cites W3016610966 @default.
- W4225120216 cites W3025815763 @default.
- W4225120216 cites W3027362232 @default.
- W4225120216 cites W3027763298 @default.
- W4225120216 cites W3037995725 @default.
- W4225120216 cites W3040659409 @default.
- W4225120216 cites W3044506081 @default.
- W4225120216 cites W3045931268 @default.
- W4225120216 cites W3046539079 @default.
- W4225120216 cites W3048749423 @default.
- W4225120216 cites W3087284811 @default.
- W4225120216 cites W3098401985 @default.
- W4225120216 cites W3105081694 @default.
- W4225120216 cites W3108656121 @default.
- W4225120216 cites W3111142877 @default.
- W4225120216 cites W3112788036 @default.
- W4225120216 doi "https://doi.org/10.1111/coin.12528" @default.
- W4225120216 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35941908" @default.
- W4225120216 hasPublicationYear "2022" @default.
- W4225120216 type Work @default.
- W4225120216 citedByCount "2" @default.
- W4225120216 countsByYear W42251202162022 @default.
- W4225120216 countsByYear W42251202162023 @default.
- W4225120216 crossrefType "journal-article" @default.
- W4225120216 hasAuthorship W4225120216A5022028229 @default.
- W4225120216 hasAuthorship W4225120216A5055379843 @default.
- W4225120216 hasAuthorship W4225120216A5073668152 @default.
- W4225120216 hasAuthorship W4225120216A5078100598 @default.
- W4225120216 hasAuthorship W4225120216A5078501534 @default.
- W4225120216 hasBestOaLocation W42251202161 @default.
- W4225120216 hasConcept C108583219 @default.
- W4225120216 hasConcept C124101348 @default.
- W4225120216 hasConcept C134306372 @default.
- W4225120216 hasConcept C142724271 @default.
- W4225120216 hasConcept C153180895 @default.
- W4225120216 hasConcept C154945302 @default.
- W4225120216 hasConcept C162307627 @default.
- W4225120216 hasConcept C162324750 @default.
- W4225120216 hasConcept C175444787 @default.
- W4225120216 hasConcept C2778456923 @default.
- W4225120216 hasConcept C2778869765 @default.
- W4225120216 hasConcept C2779134260 @default.
- W4225120216 hasConcept C3008058167 @default.
- W4225120216 hasConcept C33923547 @default.
- W4225120216 hasConcept C41008148 @default.
- W4225120216 hasConcept C524204448 @default.
- W4225120216 hasConcept C71924100 @default.
- W4225120216 hasConcept C77618280 @default.
- W4225120216 hasConcept C81363708 @default.
- W4225120216 hasConceptScore W4225120216C108583219 @default.
- W4225120216 hasConceptScore W4225120216C124101348 @default.
- W4225120216 hasConceptScore W4225120216C134306372 @default.
- W4225120216 hasConceptScore W4225120216C142724271 @default.
- W4225120216 hasConceptScore W4225120216C153180895 @default.
- W4225120216 hasConceptScore W4225120216C154945302 @default.
- W4225120216 hasConceptScore W4225120216C162307627 @default.
- W4225120216 hasConceptScore W4225120216C162324750 @default.
- W4225120216 hasConceptScore W4225120216C175444787 @default.
- W4225120216 hasConceptScore W4225120216C2778456923 @default.
- W4225120216 hasConceptScore W4225120216C2778869765 @default.
- W4225120216 hasConceptScore W4225120216C2779134260 @default.
- W4225120216 hasConceptScore W4225120216C3008058167 @default.
- W4225120216 hasConceptScore W4225120216C33923547 @default.