Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225124400> ?p ?o ?g. }
- W4225124400 endingPage "104562" @default.
- W4225124400 startingPage "104562" @default.
- W4225124400 abstract "Drug response classification constitutes a major challenge in personalized medicine. The suitable drug selection for cancer patients is substantial and the drug response prediction is generally based on the target information, genomic cohort and chemical structure. Hence, for classification process, feature selection approaches are highly essential, which is driven by prior knowledge of gene expression signatures, drug targets, and target pathways. Further, the classification is performed to assess the accurate drug response prediction. To the best of our knowledge, this is the first work to assess different optimization techniques for feature selection and performing drug response classification using different classifiers based on effective optimization algorithm using Cancer Cell Line Encyclopaedia- CCLE and Genomics of Drug Sensitivity in Cancer- GDSC dataset. For performing feature selection, Firefly, Whale and Grey wolf optimization algorithms are examined. Further, to perform classification, Adaboost, gradient boost and random forest classifiers are utilized. In addition to that, a newly developed classification approach, namely Discriminative Weight Updated Tuned Deep Multi-Layer Perceptron (DWUT-MLP) is used and compared with the other classifiers. The optimization algorithms with newly developed DWUT-MLP and other existing classification techniques are evaluated and results shows that the effective feature selection algorithm with suitable classification algorithm improves anticancer drug response prediction's accuracy. Thus, this research is substantial in general for choosing an appropriate feature selection approach, has the probability of improving the accuracy from the interpretable proposed classifier model for an indicative anticancer drug response prediction. From the comparative analysis, it shows that the proposed model performs nearly 10–15% better than existing frameworks in classifying the anticancer drug response." @default.
- W4225124400 created "2022-05-01" @default.
- W4225124400 creator A5021607518 @default.
- W4225124400 creator A5065519573 @default.
- W4225124400 creator A5084461458 @default.
- W4225124400 date "2022-06-01" @default.
- W4225124400 modified "2023-10-18" @default.
- W4225124400 title "DWUT-MLP: Classification of anticancer drug response using various feature selection and classification techniques" @default.
- W4225124400 cites W2043398720 @default.
- W4225124400 cites W2052468572 @default.
- W4225124400 cites W2061438946 @default.
- W4225124400 cites W2065835133 @default.
- W4225124400 cites W2088794999 @default.
- W4225124400 cites W2100631457 @default.
- W4225124400 cites W2108068107 @default.
- W4225124400 cites W2114633835 @default.
- W4225124400 cites W2125789330 @default.
- W4225124400 cites W2259538443 @default.
- W4225124400 cites W2261944919 @default.
- W4225124400 cites W2290883490 @default.
- W4225124400 cites W2465707019 @default.
- W4225124400 cites W2593870237 @default.
- W4225124400 cites W2742007096 @default.
- W4225124400 cites W2751088916 @default.
- W4225124400 cites W2782893163 @default.
- W4225124400 cites W2800850886 @default.
- W4225124400 cites W2803773316 @default.
- W4225124400 cites W2809143981 @default.
- W4225124400 cites W2887685819 @default.
- W4225124400 cites W2888602283 @default.
- W4225124400 cites W2889300381 @default.
- W4225124400 cites W2896725104 @default.
- W4225124400 cites W2911535432 @default.
- W4225124400 cites W2911969472 @default.
- W4225124400 cites W2921800758 @default.
- W4225124400 cites W2924122678 @default.
- W4225124400 cites W2946707752 @default.
- W4225124400 cites W2948897453 @default.
- W4225124400 cites W2950063908 @default.
- W4225124400 cites W2969101446 @default.
- W4225124400 cites W2980264739 @default.
- W4225124400 cites W2988891807 @default.
- W4225124400 cites W2995175648 @default.
- W4225124400 cites W3000373012 @default.
- W4225124400 cites W3000469142 @default.
- W4225124400 cites W3008395627 @default.
- W4225124400 cites W3033741522 @default.
- W4225124400 cites W3048320505 @default.
- W4225124400 cites W3048965072 @default.
- W4225124400 cites W3058788487 @default.
- W4225124400 cites W3088056723 @default.
- W4225124400 cites W3092598205 @default.
- W4225124400 cites W3112620286 @default.
- W4225124400 cites W3124481204 @default.
- W4225124400 cites W3135347119 @default.
- W4225124400 cites W3159560895 @default.
- W4225124400 cites W3163739989 @default.
- W4225124400 cites W3200762293 @default.
- W4225124400 cites W3209882608 @default.
- W4225124400 doi "https://doi.org/10.1016/j.chemolab.2022.104562" @default.
- W4225124400 hasPublicationYear "2022" @default.
- W4225124400 type Work @default.
- W4225124400 citedByCount "5" @default.
- W4225124400 countsByYear W42251244002022 @default.
- W4225124400 countsByYear W42251244002023 @default.
- W4225124400 crossrefType "journal-article" @default.
- W4225124400 hasAuthorship W4225124400A5021607518 @default.
- W4225124400 hasAuthorship W4225124400A5065519573 @default.
- W4225124400 hasAuthorship W4225124400A5084461458 @default.
- W4225124400 hasConcept C110083411 @default.
- W4225124400 hasConcept C119857082 @default.
- W4225124400 hasConcept C12267149 @default.
- W4225124400 hasConcept C138885662 @default.
- W4225124400 hasConcept C148483581 @default.
- W4225124400 hasConcept C153180895 @default.
- W4225124400 hasConcept C154945302 @default.
- W4225124400 hasConcept C169258074 @default.
- W4225124400 hasConcept C2776401178 @default.
- W4225124400 hasConcept C2780724565 @default.
- W4225124400 hasConcept C41008148 @default.
- W4225124400 hasConcept C41895202 @default.
- W4225124400 hasConcept C50644808 @default.
- W4225124400 hasConcept C52001869 @default.
- W4225124400 hasConcept C60908668 @default.
- W4225124400 hasConcept C95623464 @default.
- W4225124400 hasConcept C97931131 @default.
- W4225124400 hasConceptScore W4225124400C110083411 @default.
- W4225124400 hasConceptScore W4225124400C119857082 @default.
- W4225124400 hasConceptScore W4225124400C12267149 @default.
- W4225124400 hasConceptScore W4225124400C138885662 @default.
- W4225124400 hasConceptScore W4225124400C148483581 @default.
- W4225124400 hasConceptScore W4225124400C153180895 @default.
- W4225124400 hasConceptScore W4225124400C154945302 @default.
- W4225124400 hasConceptScore W4225124400C169258074 @default.
- W4225124400 hasConceptScore W4225124400C2776401178 @default.
- W4225124400 hasConceptScore W4225124400C2780724565 @default.
- W4225124400 hasConceptScore W4225124400C41008148 @default.
- W4225124400 hasConceptScore W4225124400C41895202 @default.