Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225126445> ?p ?o ?g. }
- W4225126445 abstract "In oncology studies, it is important to understand and characterize disease heterogeneity among patients so that patients can be classified into different risk groups and one can identify high-risk patients at the right time. This information can then be used to identify a more homogeneous patient population for developing precision medicine. In this paper, we propose a mixture survival tree approach for direct risk classification. We assume that the patients can be classified into a pre-specified number of risk groups, where each group has distinct survival profile. Our proposed tree-based methods are devised to estimate latent group membership using an EM algorithm. The observed data log-likelihood function is used as the splitting criterion in recursive partitioning. The finite sample performance is evaluated by extensive simulation studies and the proposed method is illustrated by a case study in breast cancer." @default.
- W4225126445 created "2022-05-01" @default.
- W4225126445 creator A5011927270 @default.
- W4225126445 creator A5022659972 @default.
- W4225126445 creator A5056322441 @default.
- W4225126445 creator A5058269183 @default.
- W4225126445 creator A5075031456 @default.
- W4225126445 creator A5078399867 @default.
- W4225126445 creator A5079452824 @default.
- W4225126445 date "2022-04-29" @default.
- W4225126445 modified "2023-09-23" @default.
- W4225126445 title "Mixture survival trees for cancer risk classification" @default.
- W4225126445 cites W150987698 @default.
- W4225126445 cites W1522921740 @default.
- W4225126445 cites W1972075140 @default.
- W4225126445 cites W1978391225 @default.
- W4225126445 cites W1997498098 @default.
- W4225126445 cites W2007741247 @default.
- W4225126445 cites W2027350151 @default.
- W4225126445 cites W2044076969 @default.
- W4225126445 cites W2059537042 @default.
- W4225126445 cites W2061893665 @default.
- W4225126445 cites W2078053549 @default.
- W4225126445 cites W2093729382 @default.
- W4225126445 cites W2165884492 @default.
- W4225126445 cites W2211287272 @default.
- W4225126445 cites W2259439942 @default.
- W4225126445 cites W2464257012 @default.
- W4225126445 cites W2911211328 @default.
- W4225126445 cites W2943529586 @default.
- W4225126445 cites W2962957388 @default.
- W4225126445 cites W2998340787 @default.
- W4225126445 cites W3037030027 @default.
- W4225126445 cites W3081120827 @default.
- W4225126445 cites W3093985141 @default.
- W4225126445 cites W4254579816 @default.
- W4225126445 cites W4293241248 @default.
- W4225126445 doi "https://doi.org/10.1007/s10985-022-09552-w" @default.
- W4225126445 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35486260" @default.
- W4225126445 hasPublicationYear "2022" @default.
- W4225126445 type Work @default.
- W4225126445 citedByCount "0" @default.
- W4225126445 crossrefType "journal-article" @default.
- W4225126445 hasAuthorship W4225126445A5011927270 @default.
- W4225126445 hasAuthorship W4225126445A5022659972 @default.
- W4225126445 hasAuthorship W4225126445A5056322441 @default.
- W4225126445 hasAuthorship W4225126445A5058269183 @default.
- W4225126445 hasAuthorship W4225126445A5075031456 @default.
- W4225126445 hasAuthorship W4225126445A5078399867 @default.
- W4225126445 hasAuthorship W4225126445A5079452824 @default.
- W4225126445 hasBestOaLocation W42251264452 @default.
- W4225126445 hasConcept C10515644 @default.
- W4225126445 hasConcept C105795698 @default.
- W4225126445 hasConcept C113174947 @default.
- W4225126445 hasConcept C114614502 @default.
- W4225126445 hasConcept C121608353 @default.
- W4225126445 hasConcept C124101348 @default.
- W4225126445 hasConcept C126322002 @default.
- W4225126445 hasConcept C134306372 @default.
- W4225126445 hasConcept C137345334 @default.
- W4225126445 hasConcept C143998085 @default.
- W4225126445 hasConcept C2908647359 @default.
- W4225126445 hasConcept C33923547 @default.
- W4225126445 hasConcept C41008148 @default.
- W4225126445 hasConcept C530470458 @default.
- W4225126445 hasConcept C66882249 @default.
- W4225126445 hasConcept C71924100 @default.
- W4225126445 hasConcept C99454951 @default.
- W4225126445 hasConceptScore W4225126445C10515644 @default.
- W4225126445 hasConceptScore W4225126445C105795698 @default.
- W4225126445 hasConceptScore W4225126445C113174947 @default.
- W4225126445 hasConceptScore W4225126445C114614502 @default.
- W4225126445 hasConceptScore W4225126445C121608353 @default.
- W4225126445 hasConceptScore W4225126445C124101348 @default.
- W4225126445 hasConceptScore W4225126445C126322002 @default.
- W4225126445 hasConceptScore W4225126445C134306372 @default.
- W4225126445 hasConceptScore W4225126445C137345334 @default.
- W4225126445 hasConceptScore W4225126445C143998085 @default.
- W4225126445 hasConceptScore W4225126445C2908647359 @default.
- W4225126445 hasConceptScore W4225126445C33923547 @default.
- W4225126445 hasConceptScore W4225126445C41008148 @default.
- W4225126445 hasConceptScore W4225126445C530470458 @default.
- W4225126445 hasConceptScore W4225126445C66882249 @default.
- W4225126445 hasConceptScore W4225126445C71924100 @default.
- W4225126445 hasConceptScore W4225126445C99454951 @default.
- W4225126445 hasLocation W42251264451 @default.
- W4225126445 hasLocation W42251264452 @default.
- W4225126445 hasLocation W42251264453 @default.
- W4225126445 hasOpenAccess W4225126445 @default.
- W4225126445 hasPrimaryLocation W42251264451 @default.
- W4225126445 hasRelatedWork W2055804777 @default.
- W4225126445 hasRelatedWork W2098891062 @default.
- W4225126445 hasRelatedWork W2224319365 @default.
- W4225126445 hasRelatedWork W2748952813 @default.
- W4225126445 hasRelatedWork W2899084033 @default.
- W4225126445 hasRelatedWork W2989121736 @default.
- W4225126445 hasRelatedWork W317834158 @default.
- W4225126445 hasRelatedWork W4220726198 @default.
- W4225126445 hasRelatedWork W4256227745 @default.
- W4225126445 hasRelatedWork W2555822460 @default.