Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225127550> ?p ?o ?g. }
- W4225127550 endingPage "121129" @default.
- W4225127550 startingPage "121129" @default.
- W4225127550 abstract "An inverse computation machine learning (ML) framework that couples genetic algorithm (GA) to feedforward neural network was developed to optimize the operating parameters for maximizing electrochemical removal of chemical oxygen demand (COD) and total nitrogen (TN) from wastewater. Conventional neural networks (NN) are generally unable to implement inverse computation from a desired abatement to feasible input conditions, and NN trained from small-scale datasets tends to be unreliable for multivariate simulation. To address this issue, we employed GA for tuning the weights and biases of the network to enhance the stability and generalization performance of NN, the optimization of multiple operating conditions was performed by the GA strategy of iterative evolution and global search. In this work, we investigated and analyzed the performance of multivariate optimization approaches such as orthogonal design, response surface methodology (RSM), traditional NN, and the developed neuro-genetic model (GANN). Significance and error analysis demonstrate that GANN exhibits superior stability and generalization ability with the highest R2 of 0.946 (COD), 0.874 (TN), and the lowest RMSE of 0.022 (COD), 0.028 (TN). The introduction of GA is significant for improving the prediction accuracy of NN derived from small-scale datasets. The average error of the GANN trained by 25 data points is lower than that of the RSM model derived from 54 data points. According to the validation outcomes, the scheme suggested by GANN achieves the best COD (93.6%) and TN (62.8%) degradation efficiencies, which are 6.1% and 9.9% higher than the optimal values in the original dataset, respectively. The proposed multivariate global optimization strategy can be extended to other cases, and the computational framework of GANN also contributes to the progress of more reliable ML models." @default.
- W4225127550 created "2022-05-01" @default.
- W4225127550 creator A5021585989 @default.
- W4225127550 creator A5031390739 @default.
- W4225127550 creator A5048060311 @default.
- W4225127550 creator A5052583096 @default.
- W4225127550 creator A5082323158 @default.
- W4225127550 date "2022-08-01" @default.
- W4225127550 modified "2023-10-17" @default.
- W4225127550 title "Multivariate optimization of the electrochemical degradation for COD and TN removal from wastewater: An inverse computation machine learning approach" @default.
- W4225127550 cites W1901616594 @default.
- W4225127550 cites W1967908849 @default.
- W4225127550 cites W1995341919 @default.
- W4225127550 cites W2003756933 @default.
- W4225127550 cites W2004564802 @default.
- W4225127550 cites W2008998639 @default.
- W4225127550 cites W2010222480 @default.
- W4225127550 cites W2035335541 @default.
- W4225127550 cites W2076063813 @default.
- W4225127550 cites W2080824589 @default.
- W4225127550 cites W2383894479 @default.
- W4225127550 cites W2463807667 @default.
- W4225127550 cites W2617774391 @default.
- W4225127550 cites W2752353063 @default.
- W4225127550 cites W2793717135 @default.
- W4225127550 cites W2919115771 @default.
- W4225127550 cites W2942595792 @default.
- W4225127550 cites W2943843211 @default.
- W4225127550 cites W2953136636 @default.
- W4225127550 cites W2963785714 @default.
- W4225127550 cites W2971532241 @default.
- W4225127550 cites W2989932542 @default.
- W4225127550 cites W2990991195 @default.
- W4225127550 cites W2997811423 @default.
- W4225127550 cites W3005888617 @default.
- W4225127550 cites W3010616240 @default.
- W4225127550 cites W3024321524 @default.
- W4225127550 cites W3049583779 @default.
- W4225127550 cites W3086396672 @default.
- W4225127550 cites W3106370744 @default.
- W4225127550 cites W3118003047 @default.
- W4225127550 cites W3120234699 @default.
- W4225127550 cites W3124556439 @default.
- W4225127550 cites W3128546324 @default.
- W4225127550 cites W3164624654 @default.
- W4225127550 cites W3187051368 @default.
- W4225127550 cites W3196022540 @default.
- W4225127550 cites W3200941443 @default.
- W4225127550 cites W4246929798 @default.
- W4225127550 doi "https://doi.org/10.1016/j.seppur.2022.121129" @default.
- W4225127550 hasPublicationYear "2022" @default.
- W4225127550 type Work @default.
- W4225127550 citedByCount "2" @default.
- W4225127550 countsByYear W42251275502022 @default.
- W4225127550 countsByYear W42251275502023 @default.
- W4225127550 crossrefType "journal-article" @default.
- W4225127550 hasAuthorship W4225127550A5021585989 @default.
- W4225127550 hasAuthorship W4225127550A5031390739 @default.
- W4225127550 hasAuthorship W4225127550A5048060311 @default.
- W4225127550 hasAuthorship W4225127550A5052583096 @default.
- W4225127550 hasAuthorship W4225127550A5082323158 @default.
- W4225127550 hasConcept C105795698 @default.
- W4225127550 hasConcept C11413529 @default.
- W4225127550 hasConcept C119857082 @default.
- W4225127550 hasConcept C126255220 @default.
- W4225127550 hasConcept C134306372 @default.
- W4225127550 hasConcept C139945424 @default.
- W4225127550 hasConcept C150077022 @default.
- W4225127550 hasConcept C154945302 @default.
- W4225127550 hasConcept C161584116 @default.
- W4225127550 hasConcept C177148314 @default.
- W4225127550 hasConcept C207467116 @default.
- W4225127550 hasConcept C2524010 @default.
- W4225127550 hasConcept C33923547 @default.
- W4225127550 hasConcept C41008148 @default.
- W4225127550 hasConcept C45374587 @default.
- W4225127550 hasConcept C47702885 @default.
- W4225127550 hasConcept C50644808 @default.
- W4225127550 hasConcept C8880873 @default.
- W4225127550 hasConceptScore W4225127550C105795698 @default.
- W4225127550 hasConceptScore W4225127550C11413529 @default.
- W4225127550 hasConceptScore W4225127550C119857082 @default.
- W4225127550 hasConceptScore W4225127550C126255220 @default.
- W4225127550 hasConceptScore W4225127550C134306372 @default.
- W4225127550 hasConceptScore W4225127550C139945424 @default.
- W4225127550 hasConceptScore W4225127550C150077022 @default.
- W4225127550 hasConceptScore W4225127550C154945302 @default.
- W4225127550 hasConceptScore W4225127550C161584116 @default.
- W4225127550 hasConceptScore W4225127550C177148314 @default.
- W4225127550 hasConceptScore W4225127550C207467116 @default.
- W4225127550 hasConceptScore W4225127550C2524010 @default.
- W4225127550 hasConceptScore W4225127550C33923547 @default.
- W4225127550 hasConceptScore W4225127550C41008148 @default.
- W4225127550 hasConceptScore W4225127550C45374587 @default.
- W4225127550 hasConceptScore W4225127550C47702885 @default.
- W4225127550 hasConceptScore W4225127550C50644808 @default.
- W4225127550 hasConceptScore W4225127550C8880873 @default.
- W4225127550 hasLocation W42251275501 @default.