Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225132530> ?p ?o ?g. }
- W4225132530 abstract "Structural damage identification based on the long short-term memory (LSTM) neural network (NN) is proposed in this study. To address the hyperparameters selection problem for the LSTM, the Jaya algorithm is applied to minimize the difference between the observed and predicted data in the validation datasets and determine the LSTM network’s optimal hyperparameters, including the number of nodes, learning rate, and maximum iteration number. Frequency-domain data, such as natural frequencies and mode shapes, are used as input of the network, and then damage locations and extents are utilized as output. Measurement uncertainties are introduced during NN training to improve the robustness of the model. Numerical and experimental studies showed that the proposed method can identify structural damage accurately when measurement noise is considered, even for damage scenarios beyond the training datasets." @default.
- W4225132530 created "2022-05-01" @default.
- W4225132530 creator A5028747236 @default.
- W4225132530 creator A5057900744 @default.
- W4225132530 creator A5073180390 @default.
- W4225132530 date "2022-06-03" @default.
- W4225132530 modified "2023-10-18" @default.
- W4225132530 title "Jaya-Based Long Short-Term Memory Neural Network for Structural Damage Identification with Consideration of Measurement Uncertainties" @default.
- W4225132530 cites W1990317494 @default.
- W4225132530 cites W2004241954 @default.
- W4225132530 cites W2021122209 @default.
- W4225132530 cites W2038796583 @default.
- W4225132530 cites W2045831595 @default.
- W4225132530 cites W2069143585 @default.
- W4225132530 cites W2078618054 @default.
- W4225132530 cites W2087714309 @default.
- W4225132530 cites W2153916713 @default.
- W4225132530 cites W2171359631 @default.
- W4225132530 cites W2463553454 @default.
- W4225132530 cites W2549940417 @default.
- W4225132530 cites W2584696667 @default.
- W4225132530 cites W2757052101 @default.
- W4225132530 cites W2770730383 @default.
- W4225132530 cites W2794078445 @default.
- W4225132530 cites W2807802042 @default.
- W4225132530 cites W2808943413 @default.
- W4225132530 cites W2912394768 @default.
- W4225132530 cites W2946752227 @default.
- W4225132530 cites W2953605673 @default.
- W4225132530 cites W2994902374 @default.
- W4225132530 cites W3000204241 @default.
- W4225132530 cites W3004864066 @default.
- W4225132530 cites W3019033771 @default.
- W4225132530 cites W3030769882 @default.
- W4225132530 cites W3088634102 @default.
- W4225132530 cites W3089711239 @default.
- W4225132530 cites W3093429982 @default.
- W4225132530 cites W3098340457 @default.
- W4225132530 cites W3109048986 @default.
- W4225132530 cites W3112057116 @default.
- W4225132530 cites W3114644403 @default.
- W4225132530 cites W3115103108 @default.
- W4225132530 cites W3133519950 @default.
- W4225132530 cites W3136021864 @default.
- W4225132530 cites W3152151290 @default.
- W4225132530 cites W3164161530 @default.
- W4225132530 cites W3174502610 @default.
- W4225132530 cites W3176396128 @default.
- W4225132530 cites W3183039042 @default.
- W4225132530 cites W3192681374 @default.
- W4225132530 doi "https://doi.org/10.1142/s0219455422501619" @default.
- W4225132530 hasPublicationYear "2022" @default.
- W4225132530 type Work @default.
- W4225132530 citedByCount "3" @default.
- W4225132530 countsByYear W42251325302022 @default.
- W4225132530 countsByYear W42251325302023 @default.
- W4225132530 crossrefType "journal-article" @default.
- W4225132530 hasAuthorship W4225132530A5028747236 @default.
- W4225132530 hasAuthorship W4225132530A5057900744 @default.
- W4225132530 hasAuthorship W4225132530A5073180390 @default.
- W4225132530 hasConcept C103824480 @default.
- W4225132530 hasConcept C104317684 @default.
- W4225132530 hasConcept C11413529 @default.
- W4225132530 hasConcept C115961682 @default.
- W4225132530 hasConcept C116834253 @default.
- W4225132530 hasConcept C119857082 @default.
- W4225132530 hasConcept C121332964 @default.
- W4225132530 hasConcept C153180895 @default.
- W4225132530 hasConcept C154945302 @default.
- W4225132530 hasConcept C185592680 @default.
- W4225132530 hasConcept C31972630 @default.
- W4225132530 hasConcept C41008148 @default.
- W4225132530 hasConcept C50644808 @default.
- W4225132530 hasConcept C55493867 @default.
- W4225132530 hasConcept C59822182 @default.
- W4225132530 hasConcept C61797465 @default.
- W4225132530 hasConcept C62520636 @default.
- W4225132530 hasConcept C63479239 @default.
- W4225132530 hasConcept C8642999 @default.
- W4225132530 hasConcept C86803240 @default.
- W4225132530 hasConcept C99498987 @default.
- W4225132530 hasConceptScore W4225132530C103824480 @default.
- W4225132530 hasConceptScore W4225132530C104317684 @default.
- W4225132530 hasConceptScore W4225132530C11413529 @default.
- W4225132530 hasConceptScore W4225132530C115961682 @default.
- W4225132530 hasConceptScore W4225132530C116834253 @default.
- W4225132530 hasConceptScore W4225132530C119857082 @default.
- W4225132530 hasConceptScore W4225132530C121332964 @default.
- W4225132530 hasConceptScore W4225132530C153180895 @default.
- W4225132530 hasConceptScore W4225132530C154945302 @default.
- W4225132530 hasConceptScore W4225132530C185592680 @default.
- W4225132530 hasConceptScore W4225132530C31972630 @default.
- W4225132530 hasConceptScore W4225132530C41008148 @default.
- W4225132530 hasConceptScore W4225132530C50644808 @default.
- W4225132530 hasConceptScore W4225132530C55493867 @default.
- W4225132530 hasConceptScore W4225132530C59822182 @default.
- W4225132530 hasConceptScore W4225132530C61797465 @default.
- W4225132530 hasConceptScore W4225132530C62520636 @default.
- W4225132530 hasConceptScore W4225132530C63479239 @default.
- W4225132530 hasConceptScore W4225132530C8642999 @default.