Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225137067> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4225137067 abstract "<sec> <title>BACKGROUND</title> Physiotherapy is a critical element in successful conservative management of low back pain (LBP). </sec> <sec> <title>OBJECTIVE</title> The aim of this study was to develop and evaluate a system with wearable inertial sensors to objectively detect sitting postures and performance of unsupervised exercises for LBP containing movement in multiple planes. </sec> <sec> <title>METHODS</title> A set of 8 inertial sensors were placed on 19 healthy adult subjects. Data was acquired as they performed 7 McKenzie low-back exercises and 3 sitting posture positions. This data was used to train two models (Random Forest (RF) and XGBoost (XGB)) using engineered time series features. In addition, a convolutional neural network (CNN) was trained directly on the time series data. A feature importance analysis was performed to identify sensor locations and channels that contributed most to the models. Finally, a subset of sensor locations and channels was included in a hyperparameter grid search to identify the optimal sensor configuration and the best performing algorithm(s) for exercise classification. Models were evaluated using F1-score in a 10-fold cross validation approach. </sec> <sec> <title>RESULTS</title> The optimal hardware configuration was identified as a 3-sensor setup using lower back, left thigh, and right ankle sensors with acceleration, gyroscope, and magnetometer channels. The XGB model achieved the highest exercise (F1=0.94±0.03) and posture (F1=0.90±0.11) classification scores. The CNN achieved similar results with the same sensor locations, using only the accelerometer and gyroscope channels for exercise classification (F1=0.94±0.02) and the accelerometer channel alone for posture classification (F1=0.88±0.07). </sec> <sec> <title>CONCLUSIONS</title> This study demonstrates the potential of a 3-sensor lower body wearable solution (e.g. smart pants) that can identify proper sitting postures and exercises in multiple planes, suitable for the treatment of LBP. This technology has the potential to improve the effectiveness of LBP rehabilitation by facilitating quantitative feedback, early problem diagnosis, and possible remote monitoring. </sec>" @default.
- W4225137067 created "2022-05-01" @default.
- W4225137067 creator A5022886773 @default.
- W4225137067 creator A5026366043 @default.
- W4225137067 creator A5044368700 @default.
- W4225137067 creator A5051263805 @default.
- W4225137067 creator A5070333836 @default.
- W4225137067 creator A5074463664 @default.
- W4225137067 date "2022-04-25" @default.
- W4225137067 modified "2023-09-27" @default.
- W4225137067 title "Detecting Low Back Physiotherapy Exercises and Postures: Classifying Inertial Sensor Data with Machine Learning (Preprint)" @default.
- W4225137067 cites W1991239827 @default.
- W4225137067 cites W1991759276 @default.
- W4225137067 cites W1993722932 @default.
- W4225137067 cites W2026993220 @default.
- W4225137067 cites W2029882504 @default.
- W4225137067 cites W2047102387 @default.
- W4225137067 cites W2131748372 @default.
- W4225137067 cites W2164760349 @default.
- W4225137067 cites W2314720829 @default.
- W4225137067 cites W2328545541 @default.
- W4225137067 cites W2338440602 @default.
- W4225137067 cites W2591746674 @default.
- W4225137067 cites W2761845090 @default.
- W4225137067 cites W2790465659 @default.
- W4225137067 cites W2791551041 @default.
- W4225137067 cites W2792932721 @default.
- W4225137067 cites W2902751829 @default.
- W4225137067 cites W2916620825 @default.
- W4225137067 cites W2920828889 @default.
- W4225137067 cites W2923072736 @default.
- W4225137067 cites W2937256749 @default.
- W4225137067 cites W2994183298 @default.
- W4225137067 cites W3037608804 @default.
- W4225137067 cites W3098254263 @default.
- W4225137067 cites W3130881312 @default.
- W4225137067 cites W3135542633 @default.
- W4225137067 cites W3135586418 @default.
- W4225137067 cites W3141268668 @default.
- W4225137067 cites W3181687473 @default.
- W4225137067 cites W4230070290 @default.
- W4225137067 cites W4235099135 @default.
- W4225137067 doi "https://doi.org/10.2196/preprints.38689" @default.
- W4225137067 hasPublicationYear "2022" @default.
- W4225137067 type Work @default.
- W4225137067 citedByCount "0" @default.
- W4225137067 crossrefType "posted-content" @default.
- W4225137067 hasAuthorship W4225137067A5022886773 @default.
- W4225137067 hasAuthorship W4225137067A5026366043 @default.
- W4225137067 hasAuthorship W4225137067A5044368700 @default.
- W4225137067 hasAuthorship W4225137067A5051263805 @default.
- W4225137067 hasAuthorship W4225137067A5070333836 @default.
- W4225137067 hasAuthorship W4225137067A5074463664 @default.
- W4225137067 hasConcept C111919701 @default.
- W4225137067 hasConcept C119857082 @default.
- W4225137067 hasConcept C127413603 @default.
- W4225137067 hasConcept C142724271 @default.
- W4225137067 hasConcept C146978453 @default.
- W4225137067 hasConcept C154945302 @default.
- W4225137067 hasConcept C158488048 @default.
- W4225137067 hasConcept C204787440 @default.
- W4225137067 hasConcept C2776370487 @default.
- W4225137067 hasConcept C2780907711 @default.
- W4225137067 hasConcept C41008148 @default.
- W4225137067 hasConcept C71924100 @default.
- W4225137067 hasConcept C79061980 @default.
- W4225137067 hasConcept C81363708 @default.
- W4225137067 hasConcept C89805583 @default.
- W4225137067 hasConceptScore W4225137067C111919701 @default.
- W4225137067 hasConceptScore W4225137067C119857082 @default.
- W4225137067 hasConceptScore W4225137067C127413603 @default.
- W4225137067 hasConceptScore W4225137067C142724271 @default.
- W4225137067 hasConceptScore W4225137067C146978453 @default.
- W4225137067 hasConceptScore W4225137067C154945302 @default.
- W4225137067 hasConceptScore W4225137067C158488048 @default.
- W4225137067 hasConceptScore W4225137067C204787440 @default.
- W4225137067 hasConceptScore W4225137067C2776370487 @default.
- W4225137067 hasConceptScore W4225137067C2780907711 @default.
- W4225137067 hasConceptScore W4225137067C41008148 @default.
- W4225137067 hasConceptScore W4225137067C71924100 @default.
- W4225137067 hasConceptScore W4225137067C79061980 @default.
- W4225137067 hasConceptScore W4225137067C81363708 @default.
- W4225137067 hasConceptScore W4225137067C89805583 @default.
- W4225137067 hasLocation W42251370671 @default.
- W4225137067 hasOpenAccess W4225137067 @default.
- W4225137067 hasPrimaryLocation W42251370671 @default.
- W4225137067 hasRelatedWork W2101286829 @default.
- W4225137067 hasRelatedWork W2537424468 @default.
- W4225137067 hasRelatedWork W2945107784 @default.
- W4225137067 hasRelatedWork W2966705350 @default.
- W4225137067 hasRelatedWork W3001866458 @default.
- W4225137067 hasRelatedWork W3006583835 @default.
- W4225137067 hasRelatedWork W3162864352 @default.
- W4225137067 hasRelatedWork W3170211675 @default.
- W4225137067 hasRelatedWork W3204936303 @default.
- W4225137067 hasRelatedWork W4366287492 @default.
- W4225137067 isParatext "false" @default.
- W4225137067 isRetracted "false" @default.
- W4225137067 workType "article" @default.