Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225149230> ?p ?o ?g. }
- W4225149230 endingPage "121718" @default.
- W4225149230 startingPage "121718" @default.
- W4225149230 abstract "To capture emerging technologies in the fast-changing technology market, use of information concerning new technology-based firms (NTBFs) is strongly encouraged, in addition to the information about the technology itself. Especially, NTBFs rapidly respond to technological change, and their investment information is a significant criterion of technology valuation. Therefore, this study proposes a new technology opportunity discovery (TOD) framework that exploits text mining by deep learning and a knowledge graph (KG) by using three data sources: technology, NTBF, and investor data. First, a technology-classification model was developed using technical text data acquired using Doc2vec and logistic regression, and then this model assigned highly-relevant technology fields to NTBFs using NTBFs’ investor relation text data. Next, a KG that considers technology, NTBF, and NTBF’s investor was constructed to represent their relations for TOD by using the results of previous steps. Lastly, considering inter-connectivities of such factors, a TOD index that measures the potential of technologies was proposed. The accuracy and validity of the methods were demonstrated empirically, and an evaluation of emerging technologies identified by the analysis was provided. Our framework will be of great significance as a useful alternative to provide new insights for emerging technologies in the industry and market." @default.
- W4225149230 created "2022-05-01" @default.
- W4225149230 creator A5003352462 @default.
- W4225149230 creator A5007044119 @default.
- W4225149230 creator A5041441355 @default.
- W4225149230 creator A5069596827 @default.
- W4225149230 date "2022-07-01" @default.
- W4225149230 modified "2023-09-30" @default.
- W4225149230 title "Technology Opportunity Discovery using Deep Learning-based Text Mining and a Knowledge Graph" @default.
- W4225149230 cites W1966406777 @default.
- W4225149230 cites W1989859459 @default.
- W4225149230 cites W1991348765 @default.
- W4225149230 cites W1992760964 @default.
- W4225149230 cites W2000039169 @default.
- W4225149230 cites W2003575784 @default.
- W4225149230 cites W2008735451 @default.
- W4225149230 cites W2013819814 @default.
- W4225149230 cites W2015311578 @default.
- W4225149230 cites W2020986551 @default.
- W4225149230 cites W2050264809 @default.
- W4225149230 cites W2081112969 @default.
- W4225149230 cites W2099598039 @default.
- W4225149230 cites W2114225110 @default.
- W4225149230 cites W2132258029 @default.
- W4225149230 cites W2147093515 @default.
- W4225149230 cites W2170521549 @default.
- W4225149230 cites W2170634481 @default.
- W4225149230 cites W2176030865 @default.
- W4225149230 cites W2187954280 @default.
- W4225149230 cites W2250539671 @default.
- W4225149230 cites W2591179595 @default.
- W4225149230 cites W2599940211 @default.
- W4225149230 cites W2762041969 @default.
- W4225149230 cites W2797870998 @default.
- W4225149230 cites W2803982643 @default.
- W4225149230 cites W2901525922 @default.
- W4225149230 cites W2902592749 @default.
- W4225149230 cites W2945234360 @default.
- W4225149230 cites W2953532875 @default.
- W4225149230 cites W2953600524 @default.
- W4225149230 cites W2971990587 @default.
- W4225149230 cites W2972293474 @default.
- W4225149230 cites W2973106912 @default.
- W4225149230 cites W2974613155 @default.
- W4225149230 cites W2982514750 @default.
- W4225149230 cites W3014792393 @default.
- W4225149230 cites W3021303243 @default.
- W4225149230 cites W3112796452 @default.
- W4225149230 cites W3114303065 @default.
- W4225149230 cites W3135515749 @default.
- W4225149230 cites W566914744 @default.
- W4225149230 doi "https://doi.org/10.1016/j.techfore.2022.121718" @default.
- W4225149230 hasPublicationYear "2022" @default.
- W4225149230 type Work @default.
- W4225149230 citedByCount "9" @default.
- W4225149230 countsByYear W42251492302022 @default.
- W4225149230 countsByYear W42251492302023 @default.
- W4225149230 crossrefType "journal-article" @default.
- W4225149230 hasAuthorship W4225149230A5003352462 @default.
- W4225149230 hasAuthorship W4225149230A5007044119 @default.
- W4225149230 hasAuthorship W4225149230A5041441355 @default.
- W4225149230 hasAuthorship W4225149230A5069596827 @default.
- W4225149230 hasBestOaLocation W42251492301 @default.
- W4225149230 hasConcept C10138342 @default.
- W4225149230 hasConcept C120567893 @default.
- W4225149230 hasConcept C124101348 @default.
- W4225149230 hasConcept C132525143 @default.
- W4225149230 hasConcept C144133560 @default.
- W4225149230 hasConcept C154945302 @default.
- W4225149230 hasConcept C165696696 @default.
- W4225149230 hasConcept C186027771 @default.
- W4225149230 hasConcept C207267971 @default.
- W4225149230 hasConcept C2522767166 @default.
- W4225149230 hasConcept C2987255567 @default.
- W4225149230 hasConcept C38652104 @default.
- W4225149230 hasConcept C41008148 @default.
- W4225149230 hasConcept C80444323 @default.
- W4225149230 hasConceptScore W4225149230C10138342 @default.
- W4225149230 hasConceptScore W4225149230C120567893 @default.
- W4225149230 hasConceptScore W4225149230C124101348 @default.
- W4225149230 hasConceptScore W4225149230C132525143 @default.
- W4225149230 hasConceptScore W4225149230C144133560 @default.
- W4225149230 hasConceptScore W4225149230C154945302 @default.
- W4225149230 hasConceptScore W4225149230C165696696 @default.
- W4225149230 hasConceptScore W4225149230C186027771 @default.
- W4225149230 hasConceptScore W4225149230C207267971 @default.
- W4225149230 hasConceptScore W4225149230C2522767166 @default.
- W4225149230 hasConceptScore W4225149230C2987255567 @default.
- W4225149230 hasConceptScore W4225149230C38652104 @default.
- W4225149230 hasConceptScore W4225149230C41008148 @default.
- W4225149230 hasConceptScore W4225149230C80444323 @default.
- W4225149230 hasFunder F4320321348 @default.
- W4225149230 hasFunder F4320322120 @default.
- W4225149230 hasFunder F4320328359 @default.
- W4225149230 hasFunder F4320334877 @default.
- W4225149230 hasFunder F4320335489 @default.
- W4225149230 hasLocation W42251492301 @default.
- W4225149230 hasOpenAccess W4225149230 @default.