Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225149744> ?p ?o ?g. }
- W4225149744 endingPage "102180" @default.
- W4225149744 startingPage "102180" @default.
- W4225149744 abstract "Under the framework of dynamic conditional score, we propose a parametric forecasting model for Value-at-Risk based on the normal inverse Gaussian distribution (Hereinafter NIG-DCS-VaR), which creatively incorporates intraday information into daily VaR forecast. NIG specifies an appropriate distribution to return and the semi-additivity of the NIG parameters makes it feasible to improve the estimation of daily return in light of intraday return, and thus the VaR can be explicitly obtained by calculating the quantile of the re-estimated distribution of daily return. We conducted an empirical analysis using two main indexes of the Chinese stock market, and a variety of backtesting approaches as well as the model confidence set approach prove that the VaR forecasts of NIG-DCS model generally gain an advantage over those of realized GARCH (RGARCH) models. Especially when the risk level is relatively high, NIG-DCS-VaR beats RGARCH-VaR in terms of coverage ability and independence." @default.
- W4225149744 created "2022-05-01" @default.
- W4225149744 creator A5001025785 @default.
- W4225149744 creator A5035466195 @default.
- W4225149744 date "2022-07-01" @default.
- W4225149744 modified "2023-10-02" @default.
- W4225149744 title "Predicting VaR for China's stock market: A score-driven model based on normal inverse Gaussian distribution" @default.
- W4225149744 cites W1485872351 @default.
- W4225149744 cites W15056483 @default.
- W4225149744 cites W1885451613 @default.
- W4225149744 cites W191692956 @default.
- W4225149744 cites W1963787328 @default.
- W4225149744 cites W1977970167 @default.
- W4225149744 cites W1979575715 @default.
- W4225149744 cites W1999814123 @default.
- W4225149744 cites W1999996900 @default.
- W4225149744 cites W2012189049 @default.
- W4225149744 cites W2018090882 @default.
- W4225149744 cites W2024726293 @default.
- W4225149744 cites W2027951671 @default.
- W4225149744 cites W2058514393 @default.
- W4225149744 cites W2077554020 @default.
- W4225149744 cites W2093074410 @default.
- W4225149744 cites W2112339981 @default.
- W4225149744 cites W2118756735 @default.
- W4225149744 cites W2123446302 @default.
- W4225149744 cites W2125536334 @default.
- W4225149744 cites W2126434678 @default.
- W4225149744 cites W2140585983 @default.
- W4225149744 cites W2146399390 @default.
- W4225149744 cites W2153947535 @default.
- W4225149744 cites W2174253870 @default.
- W4225149744 cites W2201730586 @default.
- W4225149744 cites W2204730588 @default.
- W4225149744 cites W2279638736 @default.
- W4225149744 cites W2905820379 @default.
- W4225149744 cites W2920992240 @default.
- W4225149744 cites W2961568821 @default.
- W4225149744 cites W3023429964 @default.
- W4225149744 cites W3121364726 @default.
- W4225149744 cites W3122046970 @default.
- W4225149744 cites W3122534653 @default.
- W4225149744 cites W3124026849 @default.
- W4225149744 cites W3125412410 @default.
- W4225149744 cites W3125602152 @default.
- W4225149744 cites W4235708440 @default.
- W4225149744 doi "https://doi.org/10.1016/j.irfa.2022.102180" @default.
- W4225149744 hasPublicationYear "2022" @default.
- W4225149744 type Work @default.
- W4225149744 citedByCount "6" @default.
- W4225149744 countsByYear W42251497442023 @default.
- W4225149744 crossrefType "journal-article" @default.
- W4225149744 hasAuthorship W4225149744A5001025785 @default.
- W4225149744 hasAuthorship W4225149744A5035466195 @default.
- W4225149744 hasConcept C10138342 @default.
- W4225149744 hasConcept C105795698 @default.
- W4225149744 hasConcept C110121322 @default.
- W4225149744 hasConcept C118671147 @default.
- W4225149744 hasConcept C121332964 @default.
- W4225149744 hasConcept C132878287 @default.
- W4225149744 hasConcept C133029050 @default.
- W4225149744 hasConcept C134306372 @default.
- W4225149744 hasConcept C149782125 @default.
- W4225149744 hasConcept C162324750 @default.
- W4225149744 hasConcept C163716315 @default.
- W4225149744 hasConcept C166957645 @default.
- W4225149744 hasConcept C205649164 @default.
- W4225149744 hasConcept C23922673 @default.
- W4225149744 hasConcept C2779343474 @default.
- W4225149744 hasConcept C2780299701 @default.
- W4225149744 hasConcept C32896092 @default.
- W4225149744 hasConcept C33923547 @default.
- W4225149744 hasConcept C62520636 @default.
- W4225149744 hasConcept C88389905 @default.
- W4225149744 hasConcept C91602232 @default.
- W4225149744 hasConcept C94128290 @default.
- W4225149744 hasConceptScore W4225149744C10138342 @default.
- W4225149744 hasConceptScore W4225149744C105795698 @default.
- W4225149744 hasConceptScore W4225149744C110121322 @default.
- W4225149744 hasConceptScore W4225149744C118671147 @default.
- W4225149744 hasConceptScore W4225149744C121332964 @default.
- W4225149744 hasConceptScore W4225149744C132878287 @default.
- W4225149744 hasConceptScore W4225149744C133029050 @default.
- W4225149744 hasConceptScore W4225149744C134306372 @default.
- W4225149744 hasConceptScore W4225149744C149782125 @default.
- W4225149744 hasConceptScore W4225149744C162324750 @default.
- W4225149744 hasConceptScore W4225149744C163716315 @default.
- W4225149744 hasConceptScore W4225149744C166957645 @default.
- W4225149744 hasConceptScore W4225149744C205649164 @default.
- W4225149744 hasConceptScore W4225149744C23922673 @default.
- W4225149744 hasConceptScore W4225149744C2779343474 @default.
- W4225149744 hasConceptScore W4225149744C2780299701 @default.
- W4225149744 hasConceptScore W4225149744C32896092 @default.
- W4225149744 hasConceptScore W4225149744C33923547 @default.
- W4225149744 hasConceptScore W4225149744C62520636 @default.
- W4225149744 hasConceptScore W4225149744C88389905 @default.
- W4225149744 hasConceptScore W4225149744C91602232 @default.
- W4225149744 hasConceptScore W4225149744C94128290 @default.