Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225152452> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4225152452 endingPage "053402" @default.
- W4225152452 startingPage "053402" @default.
- W4225152452 abstract "Semi-supervised learning (SSL) has become an interesting research area due to its capacity for learning in scenarios where both labeled and unlabeled data are available. In this work, we focus on the task of transduction - when the objective is to label all data presented to the learner - with a mean-field approximation to the Potts model. Aiming at this particular task we study how classification results depend on $beta$ and find that the optimal phase depends highly on the amount of labeled data available. In the same study, we also observe that more stable classifications regarding small fluctuations in $beta$ are related to configurations of high probability and propose a tuning approach based on such observation. This method relies on a novel parameter $gamma$ and we then evaluate two different values of the said quantity in comparison with classical methods in the field. This evaluation is conducted by changing the amount of labeled data available and the number of nearest neighbors in the similarity graph. Empirical results show that the tuning method is effective and allows NMF to outperform other approaches in datasets with fewer classes. In addition, one of the chosen values for $gamma$ also leads to results that are more resilient to changes in the number of neighbors, which might be of interest to practitioners in the field of SSL." @default.
- W4225152452 created "2022-05-01" @default.
- W4225152452 creator A5034280253 @default.
- W4225152452 creator A5038286455 @default.
- W4225152452 date "2022-05-01" @default.
- W4225152452 modified "2023-09-27" @default.
- W4225152452 title "On tuning a mean-field model for semi-supervised classification" @default.
- W4225152452 cites W1965511886 @default.
- W4225152452 cites W1985239037 @default.
- W4225152452 cites W1988888548 @default.
- W4225152452 cites W2043154233 @default.
- W4225152452 cites W2076280956 @default.
- W4225152452 cites W2100659887 @default.
- W4225152452 cites W2104266030 @default.
- W4225152452 cites W2137358312 @default.
- W4225152452 cites W2173885068 @default.
- W4225152452 cites W2217282979 @default.
- W4225152452 cites W2552833909 @default.
- W4225152452 cites W2964181763 @default.
- W4225152452 cites W2984353870 @default.
- W4225152452 cites W3005651001 @default.
- W4225152452 cites W3021294679 @default.
- W4225152452 cites W3030221510 @default.
- W4225152452 cites W3103145119 @default.
- W4225152452 cites W3104077659 @default.
- W4225152452 doi "https://doi.org/10.1088/1742-5468/ac6f02" @default.
- W4225152452 hasPublicationYear "2022" @default.
- W4225152452 type Work @default.
- W4225152452 citedByCount "1" @default.
- W4225152452 countsByYear W42251524522023 @default.
- W4225152452 crossrefType "journal-article" @default.
- W4225152452 hasAuthorship W4225152452A5034280253 @default.
- W4225152452 hasAuthorship W4225152452A5038286455 @default.
- W4225152452 hasBestOaLocation W42251524522 @default.
- W4225152452 hasConcept C103278499 @default.
- W4225152452 hasConcept C115961682 @default.
- W4225152452 hasConcept C119857082 @default.
- W4225152452 hasConcept C132525143 @default.
- W4225152452 hasConcept C153180895 @default.
- W4225152452 hasConcept C154945302 @default.
- W4225152452 hasConcept C162324750 @default.
- W4225152452 hasConcept C187736073 @default.
- W4225152452 hasConcept C202444582 @default.
- W4225152452 hasConcept C2780451532 @default.
- W4225152452 hasConcept C33923547 @default.
- W4225152452 hasConcept C41008148 @default.
- W4225152452 hasConcept C80444323 @default.
- W4225152452 hasConcept C9652623 @default.
- W4225152452 hasConceptScore W4225152452C103278499 @default.
- W4225152452 hasConceptScore W4225152452C115961682 @default.
- W4225152452 hasConceptScore W4225152452C119857082 @default.
- W4225152452 hasConceptScore W4225152452C132525143 @default.
- W4225152452 hasConceptScore W4225152452C153180895 @default.
- W4225152452 hasConceptScore W4225152452C154945302 @default.
- W4225152452 hasConceptScore W4225152452C162324750 @default.
- W4225152452 hasConceptScore W4225152452C187736073 @default.
- W4225152452 hasConceptScore W4225152452C202444582 @default.
- W4225152452 hasConceptScore W4225152452C2780451532 @default.
- W4225152452 hasConceptScore W4225152452C33923547 @default.
- W4225152452 hasConceptScore W4225152452C41008148 @default.
- W4225152452 hasConceptScore W4225152452C80444323 @default.
- W4225152452 hasConceptScore W4225152452C9652623 @default.
- W4225152452 hasIssue "5" @default.
- W4225152452 hasLocation W42251524521 @default.
- W4225152452 hasLocation W42251524522 @default.
- W4225152452 hasOpenAccess W4225152452 @default.
- W4225152452 hasPrimaryLocation W42251524521 @default.
- W4225152452 hasRelatedWork W2081647779 @default.
- W4225152452 hasRelatedWork W2961085424 @default.
- W4225152452 hasRelatedWork W3046775127 @default.
- W4225152452 hasRelatedWork W3170094116 @default.
- W4225152452 hasRelatedWork W4205958290 @default.
- W4225152452 hasRelatedWork W4285260836 @default.
- W4225152452 hasRelatedWork W4286629047 @default.
- W4225152452 hasRelatedWork W4306321456 @default.
- W4225152452 hasRelatedWork W4306674287 @default.
- W4225152452 hasRelatedWork W4224009465 @default.
- W4225152452 hasVolume "2022" @default.
- W4225152452 isParatext "false" @default.
- W4225152452 isRetracted "false" @default.
- W4225152452 workType "article" @default.