Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225152502> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4225152502 endingPage "1227" @default.
- W4225152502 startingPage "1216" @default.
- W4225152502 abstract "The existing management structure of medical supply inventory (MSI) is not sufficiently effective, and it is incompetent to solve the problems of medical supply stock control in public security emergencies. Therefore, deep learning and big data technology are employed in this work to optimize the stock control structure and enhance management efficiency, so that the optimized management structure can play an excellent role in the material supply of emergencies. After browsing copious literature, the economic ordering models with infinite/limited supply rate and without shortage are innovatively constructed to realize efficient management of emergency supplies inventory. Besides, the optimized fixed-point and quantitative ordering method of safety stock is employed to construct the MSI models for scarce emergency supplies and the time-sensitive emergency supplies, respectively. Then, an earthquake-related emergency is taken as a case and data source to evaluate the solution results of the emergency MSI model. Moreover, the stacked auto-encoders (SAE) algorithm is used to build the demand prediction model for MSI. Finally, a simulation experiment compares the SAE-based demand prediction model for MSI with a back propagation neural network (BPNN) model and radial basis function network (RBFN) model to verify the model’s performance. The experimental results demonstrate that after 150 times of training, the error between the predicted value and the actual value of each model is within 30, and the prediction accuracy is significantly improved. After 170 times of network training, the mean absolute error (MAE) values of BPNN model and RBFN model are 31.98 and 73.73, respectively. In contrast, the MAE value of the SAE-based model is 21.32, which is superior to the other two models. Evidently, the management structure of MSI is optimized by dividing the emergency MSI into three MSI models for the critical emergency supplies, scarce emergency supplies, and the time-sensitive emergency supplies. The research outcome can provide essential logistical support for dealing with public security emergencies." @default.
- W4225152502 created "2022-05-01" @default.
- W4225152502 creator A5003554962 @default.
- W4225152502 creator A5032737989 @default.
- W4225152502 creator A5043861582 @default.
- W4225152502 date "2022-04-29" @default.
- W4225152502 modified "2023-10-16" @default.
- W4225152502 title "Application of medical supply inventory model based on deep learning and big data" @default.
- W4225152502 cites W2297500002 @default.
- W4225152502 cites W2750351539 @default.
- W4225152502 cites W2756142552 @default.
- W4225152502 cites W2801081735 @default.
- W4225152502 cites W2919467785 @default.
- W4225152502 cites W2921753235 @default.
- W4225152502 cites W2925075011 @default.
- W4225152502 cites W2973706984 @default.
- W4225152502 cites W2990142701 @default.
- W4225152502 cites W2991124392 @default.
- W4225152502 cites W2997361729 @default.
- W4225152502 cites W3004140177 @default.
- W4225152502 cites W3017015149 @default.
- W4225152502 cites W3019667090 @default.
- W4225152502 cites W3039922545 @default.
- W4225152502 cites W3046397565 @default.
- W4225152502 cites W3087357957 @default.
- W4225152502 cites W3119254498 @default.
- W4225152502 cites W3138712558 @default.
- W4225152502 cites W3143126990 @default.
- W4225152502 cites W3167030701 @default.
- W4225152502 cites W3167974116 @default.
- W4225152502 cites W3180303330 @default.
- W4225152502 doi "https://doi.org/10.1007/s13198-022-01669-3" @default.
- W4225152502 hasPublicationYear "2022" @default.
- W4225152502 type Work @default.
- W4225152502 citedByCount "1" @default.
- W4225152502 countsByYear W42251525022022 @default.
- W4225152502 crossrefType "journal-article" @default.
- W4225152502 hasAuthorship W4225152502A5003554962 @default.
- W4225152502 hasAuthorship W4225152502A5032737989 @default.
- W4225152502 hasAuthorship W4225152502A5043861582 @default.
- W4225152502 hasBestOaLocation W42251525021 @default.
- W4225152502 hasConcept C124101348 @default.
- W4225152502 hasConcept C127413603 @default.
- W4225152502 hasConcept C138885662 @default.
- W4225152502 hasConcept C150217764 @default.
- W4225152502 hasConcept C154945302 @default.
- W4225152502 hasConcept C194051981 @default.
- W4225152502 hasConcept C2778137410 @default.
- W4225152502 hasConcept C41008148 @default.
- W4225152502 hasConcept C41895202 @default.
- W4225152502 hasConcept C42475967 @default.
- W4225152502 hasConcept C50644808 @default.
- W4225152502 hasConcept C75684735 @default.
- W4225152502 hasConceptScore W4225152502C124101348 @default.
- W4225152502 hasConceptScore W4225152502C127413603 @default.
- W4225152502 hasConceptScore W4225152502C138885662 @default.
- W4225152502 hasConceptScore W4225152502C150217764 @default.
- W4225152502 hasConceptScore W4225152502C154945302 @default.
- W4225152502 hasConceptScore W4225152502C194051981 @default.
- W4225152502 hasConceptScore W4225152502C2778137410 @default.
- W4225152502 hasConceptScore W4225152502C41008148 @default.
- W4225152502 hasConceptScore W4225152502C41895202 @default.
- W4225152502 hasConceptScore W4225152502C42475967 @default.
- W4225152502 hasConceptScore W4225152502C50644808 @default.
- W4225152502 hasConceptScore W4225152502C75684735 @default.
- W4225152502 hasIssue "S3" @default.
- W4225152502 hasLocation W42251525021 @default.
- W4225152502 hasOpenAccess W4225152502 @default.
- W4225152502 hasPrimaryLocation W42251525021 @default.
- W4225152502 hasRelatedWork W1968644452 @default.
- W4225152502 hasRelatedWork W1976507420 @default.
- W4225152502 hasRelatedWork W2358155759 @default.
- W4225152502 hasRelatedWork W2376342294 @default.
- W4225152502 hasRelatedWork W2386387936 @default.
- W4225152502 hasRelatedWork W2548059104 @default.
- W4225152502 hasRelatedWork W2612406495 @default.
- W4225152502 hasRelatedWork W2901726430 @default.
- W4225152502 hasRelatedWork W3094425250 @default.
- W4225152502 hasRelatedWork W3107474891 @default.
- W4225152502 hasVolume "13" @default.
- W4225152502 isParatext "false" @default.
- W4225152502 isRetracted "false" @default.
- W4225152502 workType "article" @default.