Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225156954> ?p ?o ?g. }
- W4225156954 endingPage "13" @default.
- W4225156954 startingPage "1" @default.
- W4225156954 abstract "Determining the temporal relationship between events has always been a challenging natural language understanding task. Previous research mainly relies on neural networks to learn effective features or artificial language features to extract temporal relationships, which usually fails when the context between two events is complex or extensive. In this paper, we propose our JSSA (Joint Semantic and Syntactic Attention) model, a method that combines both coarse-grained information from semantic level and fine-grained information from syntactic level. We utilize neighbor triples of events on syntactic dependency trees and events triple to construct syntactic attention served as clue information and prior guidance for analyzing the context information. The experiment results on TB-Dense and MATRES datasets have proved the effectiveness of our ideas." @default.
- W4225156954 created "2022-05-01" @default.
- W4225156954 creator A5014934442 @default.
- W4225156954 creator A5017941291 @default.
- W4225156954 creator A5020819805 @default.
- W4225156954 creator A5045570568 @default.
- W4225156954 creator A5045965201 @default.
- W4225156954 creator A5054452935 @default.
- W4225156954 creator A5082020327 @default.
- W4225156954 creator A5087629854 @default.
- W4225156954 date "2022-04-28" @default.
- W4225156954 modified "2023-10-16" @default.
- W4225156954 title "Temporal Relation Extraction with Joint Semantic and Syntactic Attention" @default.
- W4225156954 cites W1991169218 @default.
- W4225156954 cites W2039814707 @default.
- W4225156954 cites W2052762201 @default.
- W4225156954 cites W2060381885 @default.
- W4225156954 cites W2129615653 @default.
- W4225156954 cites W2138627627 @default.
- W4225156954 cites W2161484642 @default.
- W4225156954 cites W2162475884 @default.
- W4225156954 cites W2166513997 @default.
- W4225156954 cites W2168336840 @default.
- W4225156954 cites W2341742436 @default.
- W4225156954 cites W2603270557 @default.
- W4225156954 cites W2739896562 @default.
- W4225156954 cites W2741237963 @default.
- W4225156954 cites W2756566873 @default.
- W4225156954 cites W2760579680 @default.
- W4225156954 cites W2798001063 @default.
- W4225156954 cites W2798523175 @default.
- W4225156954 cites W2798865369 @default.
- W4225156954 cites W2809551588 @default.
- W4225156954 cites W2888945678 @default.
- W4225156954 cites W2892202918 @default.
- W4225156954 cites W2911484884 @default.
- W4225156954 cites W2953356739 @default.
- W4225156954 cites W2963247627 @default.
- W4225156954 cites W2963351448 @default.
- W4225156954 cites W2963797084 @default.
- W4225156954 cites W2964217331 @default.
- W4225156954 cites W2964263366 @default.
- W4225156954 cites W2970170773 @default.
- W4225156954 cites W2983354073 @default.
- W4225156954 cites W3003446182 @default.
- W4225156954 cites W3012871709 @default.
- W4225156954 cites W3034938110 @default.
- W4225156954 cites W3099246072 @default.
- W4225156954 cites W3101246020 @default.
- W4225156954 cites W3101620491 @default.
- W4225156954 cites W3106484161 @default.
- W4225156954 cites W3152893301 @default.
- W4225156954 cites W3176472544 @default.
- W4225156954 cites W3201459547 @default.
- W4225156954 cites W3213852855 @default.
- W4225156954 doi "https://doi.org/10.1155/2022/5680971" @default.
- W4225156954 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35528340" @default.
- W4225156954 hasPublicationYear "2022" @default.
- W4225156954 type Work @default.
- W4225156954 citedByCount "1" @default.
- W4225156954 countsByYear W42251569542023 @default.
- W4225156954 crossrefType "journal-article" @default.
- W4225156954 hasAuthorship W4225156954A5014934442 @default.
- W4225156954 hasAuthorship W4225156954A5017941291 @default.
- W4225156954 hasAuthorship W4225156954A5020819805 @default.
- W4225156954 hasAuthorship W4225156954A5045570568 @default.
- W4225156954 hasAuthorship W4225156954A5045965201 @default.
- W4225156954 hasAuthorship W4225156954A5054452935 @default.
- W4225156954 hasAuthorship W4225156954A5082020327 @default.
- W4225156954 hasAuthorship W4225156954A5087629854 @default.
- W4225156954 hasBestOaLocation W42251569541 @default.
- W4225156954 hasConcept C124101348 @default.
- W4225156954 hasConcept C127413603 @default.
- W4225156954 hasConcept C151730666 @default.
- W4225156954 hasConcept C153604712 @default.
- W4225156954 hasConcept C154945302 @default.
- W4225156954 hasConcept C162324750 @default.
- W4225156954 hasConcept C170154142 @default.
- W4225156954 hasConcept C18555067 @default.
- W4225156954 hasConcept C187736073 @default.
- W4225156954 hasConcept C195324797 @default.
- W4225156954 hasConcept C195807954 @default.
- W4225156954 hasConcept C19768560 @default.
- W4225156954 hasConcept C199360897 @default.
- W4225156954 hasConcept C204321447 @default.
- W4225156954 hasConcept C25343380 @default.
- W4225156954 hasConcept C2779343474 @default.
- W4225156954 hasConcept C2779439875 @default.
- W4225156954 hasConcept C2780451532 @default.
- W4225156954 hasConcept C2780801425 @default.
- W4225156954 hasConcept C41008148 @default.
- W4225156954 hasConcept C60048249 @default.
- W4225156954 hasConcept C86803240 @default.
- W4225156954 hasConceptScore W4225156954C124101348 @default.
- W4225156954 hasConceptScore W4225156954C127413603 @default.
- W4225156954 hasConceptScore W4225156954C151730666 @default.
- W4225156954 hasConceptScore W4225156954C153604712 @default.
- W4225156954 hasConceptScore W4225156954C154945302 @default.