Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225157025> ?p ?o ?g. }
- W4225157025 endingPage "100739" @default.
- W4225157025 startingPage "100739" @default.
- W4225157025 abstract "In recent decades, the development of transport infrastructure has had a great development, although traffic problems continue to spread due to increase due to the increase in the population in urban areas that require the use of these means of transport. This has led to increased problems related to congestion control, which has a direct impact on citizens: air pollution, fuel consumption, violation of traffic rules, noise pollution, accidents and loss of time. In Latin America, the disorderly growth of cities increases distances and routes, likewise, there is an accelerated increase in the number of cars and motorcycles, which increases the problem. In this sense, intelligent transport systems are an alternative to improve the traffic environment, they incorporate the internet of things and intelligent algorithms, for the collection of data from multiple sources and information processing, respectively, in order to improve the efficiency of the transport flow. However, the processing and modeling of traffic data is challenging due to the complexity of road networks, the space–time dependencies between them, and heterogeneous traffic patterns. In this review study, (i) the smart techniques used for the analysis of mobility data in the prediction of traffic flow in urban areas are grouped, likewise, (ii) the results of implementing said techniques are shown, in addition, (iii) The procedures performed are described and analyzed to understand the benefits and limitations of these smart techniques. Given the above, (iv) the data sets used in the literature and available for use are shown, in addition, (v) the quantifiable results of precision of the various techniques were compared, highlighting advantages and limitations, which allows us to (vi) identify the related challenges and, from there, (vii) propose a general taxonomy in which the knowledge acquired in this traffic flow review converges from a computational approach." @default.
- W4225157025 created "2022-05-01" @default.
- W4225157025 creator A5027982010 @default.
- W4225157025 creator A5061484745 @default.
- W4225157025 creator A5064257454 @default.
- W4225157025 creator A5067398506 @default.
- W4225157025 date "2022-09-01" @default.
- W4225157025 modified "2023-10-17" @default.
- W4225157025 title "Urban traffic flow prediction techniques: A review" @default.
- W4225157025 cites W2040297119 @default.
- W4225157025 cites W2043074941 @default.
- W4225157025 cites W2190353863 @default.
- W4225157025 cites W2528639018 @default.
- W4225157025 cites W2531473348 @default.
- W4225157025 cites W2579495707 @default.
- W4225157025 cites W2613331518 @default.
- W4225157025 cites W2743198946 @default.
- W4225157025 cites W2743898215 @default.
- W4225157025 cites W2766790689 @default.
- W4225157025 cites W2793820729 @default.
- W4225157025 cites W2805089611 @default.
- W4225157025 cites W2808097153 @default.
- W4225157025 cites W2887646164 @default.
- W4225157025 cites W2903871660 @default.
- W4225157025 cites W2904813135 @default.
- W4225157025 cites W2904832339 @default.
- W4225157025 cites W2914743966 @default.
- W4225157025 cites W2921685418 @default.
- W4225157025 cites W2924028299 @default.
- W4225157025 cites W2935726879 @default.
- W4225157025 cites W2936286953 @default.
- W4225157025 cites W2939224083 @default.
- W4225157025 cites W2944873391 @default.
- W4225157025 cites W2945177784 @default.
- W4225157025 cites W2955168531 @default.
- W4225157025 cites W2962790412 @default.
- W4225157025 cites W2966393605 @default.
- W4225157025 cites W2974087501 @default.
- W4225157025 cites W2975127965 @default.
- W4225157025 cites W2988815247 @default.
- W4225157025 cites W2994624540 @default.
- W4225157025 cites W2996525542 @default.
- W4225157025 cites W2996847713 @default.
- W4225157025 cites W2997848713 @default.
- W4225157025 cites W2998416884 @default.
- W4225157025 cites W2998436408 @default.
- W4225157025 cites W2998559444 @default.
- W4225157025 cites W3000301417 @default.
- W4225157025 cites W3001909761 @default.
- W4225157025 cites W3013238231 @default.
- W4225157025 cites W3015302157 @default.
- W4225157025 cites W3038326580 @default.
- W4225157025 cites W3047887131 @default.
- W4225157025 cites W3080253043 @default.
- W4225157025 cites W3080466448 @default.
- W4225157025 cites W3082091161 @default.
- W4225157025 cites W3083228182 @default.
- W4225157025 cites W3084214008 @default.
- W4225157025 cites W3094246578 @default.
- W4225157025 cites W3103720336 @default.
- W4225157025 cites W3111769493 @default.
- W4225157025 cites W3116729390 @default.
- W4225157025 cites W3120982499 @default.
- W4225157025 cites W3121098480 @default.
- W4225157025 cites W3127169886 @default.
- W4225157025 cites W3133663379 @default.
- W4225157025 cites W3153147168 @default.
- W4225157025 cites W3157466246 @default.
- W4225157025 cites W3182305291 @default.
- W4225157025 doi "https://doi.org/10.1016/j.suscom.2022.100739" @default.
- W4225157025 hasPublicationYear "2022" @default.
- W4225157025 type Work @default.
- W4225157025 citedByCount "8" @default.
- W4225157025 countsByYear W42251570252022 @default.
- W4225157025 countsByYear W42251570252023 @default.
- W4225157025 crossrefType "journal-article" @default.
- W4225157025 hasAuthorship W4225157025A5027982010 @default.
- W4225157025 hasAuthorship W4225157025A5061484745 @default.
- W4225157025 hasAuthorship W4225157025A5064257454 @default.
- W4225157025 hasAuthorship W4225157025A5067398506 @default.
- W4225157025 hasBestOaLocation W42251570251 @default.
- W4225157025 hasConcept C124101348 @default.
- W4225157025 hasConcept C127413603 @default.
- W4225157025 hasConcept C144024400 @default.
- W4225157025 hasConcept C146978453 @default.
- W4225157025 hasConcept C149923435 @default.
- W4225157025 hasConcept C207512268 @default.
- W4225157025 hasConcept C22212356 @default.
- W4225157025 hasConcept C2779888511 @default.
- W4225157025 hasConcept C2908647359 @default.
- W4225157025 hasConcept C38652104 @default.
- W4225157025 hasConcept C41008148 @default.
- W4225157025 hasConcept C45882903 @default.
- W4225157025 hasConcept C47796450 @default.
- W4225157025 hasConcept C75684735 @default.
- W4225157025 hasConceptScore W4225157025C124101348 @default.
- W4225157025 hasConceptScore W4225157025C127413603 @default.
- W4225157025 hasConceptScore W4225157025C144024400 @default.