Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225157425> ?p ?o ?g. }
- W4225157425 abstract "Developing deep learning algorithms for breast cancer screening is limited due to the lack of labeled full-field digital mammograms (FFDMs). Since FFDM is a new technique that rose in recent decades and replaced digitized screen-film mammograms (DFM) as the main technique for breast cancer screening, most mammogram datasets were still stored in the form of DFM. A solution for developing deep learning algorithms based on FFDM while leveraging existing labeled DFM datasets is a generative algorithm that generates FFDM from DFM. Generating high-resolution FFDM from DFM remains a challenge due to the limitations of network capacity and lacking GPU memory.In this study, we developed a deep-learning-based generative algorithm, HRGAN, to generate synthesized FFDM (SFFDM) from DFM. More importantly, our algorithm can keep the image resolution and details while using high-resolution DFM as input. Our model used FFDM and DFM for training. First, a sliding window was used to crop DFMs and FFDMs into 256 × 256 pixels patches. Second, the patches were divided into three categories (breast, background, and boundary) by breast masks. Patches from the DFM and FFDM datasets were paired as inputs for training our model where these paired patches should be sampled from the same category of the two different image sets. U-Net liked generators and modified discriminators with two-channels output, one channel for distinguishing real and SFFDMs and the other for representing a probability map for breast mask, were used in our algorithm. Last, a study was designed to evaluate the usefulness of HRGAN. A mass segmentation task and a calcification detection task were included in the study.Two public mammography datasets, the CBIS-DDSM dataset and the INbreast dataset, were included in our experiment. The CBIS-DDSM dataset includes 753 calcification cases and 891 mass cases with verified pathology information, resulting in a total of 3568 DFMs. The INbreast dataset contains a total of 410 FFDMs with annotations of masses, calcifications, asymmetries, and distortions. There were 1784 DFMs and 205 FFDM randomly selected as Dataset A. The remaining DFMs from the CBIS-DDSM dataset were selected as Dataset B. The remaining FFDMs from the INbreast dataset were selected as Dataset C. All DFMs and FFDMs were normalized to 100μm × 100μm in our experiments. A study with a mass segmentation task and a calcification detection task was performed to evaluate the usefulness of HRGAN.The proposed HRGAN can generate high-resolution SFFDMs from DFMs. Extensive experiments showed the SFFDMs were able to help improve the performance of deep-learning-based algorithms for breast cancer screening on DFM when the size of the training dataset is small." @default.
- W4225157425 created "2022-05-01" @default.
- W4225157425 creator A5031438011 @default.
- W4225157425 creator A5033986825 @default.
- W4225157425 creator A5082138060 @default.
- W4225157425 creator A5089572576 @default.
- W4225157425 date "2022-04-29" @default.
- W4225157425 modified "2023-09-26" @default.
- W4225157425 title "Generating Full-Field Digital Mammogram From Digitized Screen-Film Mammogram for Breast Cancer Screening With High-Resolution Generative Adversarial Network" @default.
- W4225157425 cites W1901129140 @default.
- W4225157425 cites W1903029394 @default.
- W4225157425 cites W2003167490 @default.
- W4225157425 cites W2016746465 @default.
- W4225157425 cites W2017153864 @default.
- W4225157425 cites W2017745767 @default.
- W4225157425 cites W2021523624 @default.
- W4225157425 cites W2048988218 @default.
- W4225157425 cites W2065454481 @default.
- W4225157425 cites W2108598243 @default.
- W4225157425 cites W2117873981 @default.
- W4225157425 cites W2133059825 @default.
- W4225157425 cites W2137953499 @default.
- W4225157425 cites W2155653793 @default.
- W4225157425 cites W2160331326 @default.
- W4225157425 cites W2165698076 @default.
- W4225157425 cites W2194775991 @default.
- W4225157425 cites W2588570836 @default.
- W4225157425 cites W2776937175 @default.
- W4225157425 cites W2921353139 @default.
- W4225157425 cites W2944016032 @default.
- W4225157425 cites W2962793481 @default.
- W4225157425 cites W2963073614 @default.
- W4225157425 cites W2963800363 @default.
- W4225157425 cites W2999417355 @default.
- W4225157425 cites W3012465717 @default.
- W4225157425 cites W304373761 @default.
- W4225157425 cites W3142498373 @default.
- W4225157425 cites W41027960 @default.
- W4225157425 doi "https://doi.org/10.3389/fonc.2022.868257" @default.
- W4225157425 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35574397" @default.
- W4225157425 hasPublicationYear "2022" @default.
- W4225157425 type Work @default.
- W4225157425 citedByCount "0" @default.
- W4225157425 crossrefType "journal-article" @default.
- W4225157425 hasAuthorship W4225157425A5031438011 @default.
- W4225157425 hasAuthorship W4225157425A5033986825 @default.
- W4225157425 hasAuthorship W4225157425A5082138060 @default.
- W4225157425 hasAuthorship W4225157425A5089572576 @default.
- W4225157425 hasBestOaLocation W42251574251 @default.
- W4225157425 hasConcept C108583219 @default.
- W4225157425 hasConcept C121608353 @default.
- W4225157425 hasConcept C126322002 @default.
- W4225157425 hasConcept C127413603 @default.
- W4225157425 hasConcept C153180895 @default.
- W4225157425 hasConcept C154945302 @default.
- W4225157425 hasConcept C160633673 @default.
- W4225157425 hasConcept C2780472235 @default.
- W4225157425 hasConcept C2781281974 @default.
- W4225157425 hasConcept C31972630 @default.
- W4225157425 hasConcept C41008148 @default.
- W4225157425 hasConcept C530470458 @default.
- W4225157425 hasConcept C62064638 @default.
- W4225157425 hasConcept C71924100 @default.
- W4225157425 hasConcept C78519656 @default.
- W4225157425 hasConceptScore W4225157425C108583219 @default.
- W4225157425 hasConceptScore W4225157425C121608353 @default.
- W4225157425 hasConceptScore W4225157425C126322002 @default.
- W4225157425 hasConceptScore W4225157425C127413603 @default.
- W4225157425 hasConceptScore W4225157425C153180895 @default.
- W4225157425 hasConceptScore W4225157425C154945302 @default.
- W4225157425 hasConceptScore W4225157425C160633673 @default.
- W4225157425 hasConceptScore W4225157425C2780472235 @default.
- W4225157425 hasConceptScore W4225157425C2781281974 @default.
- W4225157425 hasConceptScore W4225157425C31972630 @default.
- W4225157425 hasConceptScore W4225157425C41008148 @default.
- W4225157425 hasConceptScore W4225157425C530470458 @default.
- W4225157425 hasConceptScore W4225157425C62064638 @default.
- W4225157425 hasConceptScore W4225157425C71924100 @default.
- W4225157425 hasConceptScore W4225157425C78519656 @default.
- W4225157425 hasFunder F4320327282 @default.
- W4225157425 hasFunder F4320328940 @default.
- W4225157425 hasFunder F4320330330 @default.
- W4225157425 hasFunder F4320335480 @default.
- W4225157425 hasFunder F4320336807 @default.
- W4225157425 hasLocation W42251574251 @default.
- W4225157425 hasLocation W42251574252 @default.
- W4225157425 hasLocation W42251574253 @default.
- W4225157425 hasOpenAccess W4225157425 @default.
- W4225157425 hasPrimaryLocation W42251574251 @default.
- W4225157425 hasRelatedWork W121273120 @default.
- W4225157425 hasRelatedWork W2002009170 @default.
- W4225157425 hasRelatedWork W2034462085 @default.
- W4225157425 hasRelatedWork W2136485282 @default.
- W4225157425 hasRelatedWork W2141888456 @default.
- W4225157425 hasRelatedWork W2337415362 @default.
- W4225157425 hasRelatedWork W2546871836 @default.
- W4225157425 hasRelatedWork W2740820121 @default.
- W4225157425 hasRelatedWork W317572212 @default.
- W4225157425 hasRelatedWork W4312857205 @default.
- W4225157425 hasVolume "12" @default.