Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225161010> ?p ?o ?g. }
- W4225161010 endingPage "13" @default.
- W4225161010 startingPage "1" @default.
- W4225161010 abstract "The objective of this study was to investigate the application effect of deep learning model combined with different magnetic resonance imaging (MRI) sequences in the evaluation of cartilage injury of knee osteoarthritis (KOA). Specifically, an image superresolution algorithm based on an improved multiscale wide residual network model was proposed and compared with the single-shot multibox detector (SSD) algorithm, superresolution convolutional neural network (SRCNN) algorithm, and enhanced deep superresolution (EDSR) algorithm. Meanwhile, 104 patients with KOA diagnosed with cartilage injury were selected as the research subjects and underwent MRI scans, and the diagnostic performance of different MRI sequences was analyzed using arthroscopic results as the gold standard. It was found that the image reconstructed by the model in this study was clear enough, with minimum noise and artifacts, and the overall quality was better than that processed by other algorithms. Arthroscopic analysis found that grade I and grade II lesions concentrated on patella (26) and femoral trochlear (15). In addition to involving the patella and femoral trochlea, grade III and grade IV lesions gradually developed into the medial and lateral articular cartilage. The 3D-DS-WE sequence was found to be the best sequence for diagnosing KOA injury, with high diagnostic accuracy of over 95% in grade IV lesions. The consistency test showed that the 3D-DESS-WE sequence and T2∗ mapping sequence had a strong consistency with the results of arthroscopy, and the Kappa consistency test values were 0.748 and 0.682, respectively. In conclusion, MRI based on deep learning could clearly show the cartilage lesions of KOA. Of different MRI sequences, 3D-DS-WE sequence and T2∗ mapping sequence showed the best diagnosis results for different degrees of KOA injury." @default.
- W4225161010 created "2022-05-01" @default.
- W4225161010 creator A5012785019 @default.
- W4225161010 creator A5036938135 @default.
- W4225161010 creator A5042117342 @default.
- W4225161010 creator A5064327085 @default.
- W4225161010 date "2022-04-29" @default.
- W4225161010 modified "2023-10-01" @default.
- W4225161010 title "Deep Learning-Based Multimodal 3 T MRI for the Diagnosis of Knee Osteoarthritis" @default.
- W4225161010 cites W1449306351 @default.
- W4225161010 cites W2417008463 @default.
- W4225161010 cites W2582012588 @default.
- W4225161010 cites W2616938499 @default.
- W4225161010 cites W2750294916 @default.
- W4225161010 cites W2796154981 @default.
- W4225161010 cites W2904388821 @default.
- W4225161010 cites W2904400213 @default.
- W4225161010 cites W2919999424 @default.
- W4225161010 cites W2934693249 @default.
- W4225161010 cites W2947883798 @default.
- W4225161010 cites W2951721265 @default.
- W4225161010 cites W2965232107 @default.
- W4225161010 cites W2981485716 @default.
- W4225161010 cites W2990697799 @default.
- W4225161010 cites W3011527367 @default.
- W4225161010 cites W3015688825 @default.
- W4225161010 cites W3017382747 @default.
- W4225161010 cites W3045246418 @default.
- W4225161010 cites W3087371144 @default.
- W4225161010 cites W3095883723 @default.
- W4225161010 cites W3119526108 @default.
- W4225161010 cites W3150775224 @default.
- W4225161010 cites W3209061586 @default.
- W4225161010 cites W4200126146 @default.
- W4225161010 doi "https://doi.org/10.1155/2022/7643487" @default.
- W4225161010 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35529263" @default.
- W4225161010 hasPublicationYear "2022" @default.
- W4225161010 type Work @default.
- W4225161010 citedByCount "1" @default.
- W4225161010 countsByYear W42251610102023 @default.
- W4225161010 crossrefType "journal-article" @default.
- W4225161010 hasAuthorship W4225161010A5012785019 @default.
- W4225161010 hasAuthorship W4225161010A5036938135 @default.
- W4225161010 hasAuthorship W4225161010A5042117342 @default.
- W4225161010 hasAuthorship W4225161010A5064327085 @default.
- W4225161010 hasBestOaLocation W42251610101 @default.
- W4225161010 hasConcept C105702510 @default.
- W4225161010 hasConcept C108583219 @default.
- W4225161010 hasConcept C11413529 @default.
- W4225161010 hasConcept C115961682 @default.
- W4225161010 hasConcept C126838900 @default.
- W4225161010 hasConcept C141071460 @default.
- W4225161010 hasConcept C142724271 @default.
- W4225161010 hasConcept C143409427 @default.
- W4225161010 hasConcept C154945302 @default.
- W4225161010 hasConcept C204787440 @default.
- W4225161010 hasConcept C2524010 @default.
- W4225161010 hasConcept C2776164576 @default.
- W4225161010 hasConcept C2778112365 @default.
- W4225161010 hasConcept C2778724333 @default.
- W4225161010 hasConcept C2779162959 @default.
- W4225161010 hasConcept C2780368125 @default.
- W4225161010 hasConcept C2780550940 @default.
- W4225161010 hasConcept C2908736133 @default.
- W4225161010 hasConcept C29694066 @default.
- W4225161010 hasConcept C2989005 @default.
- W4225161010 hasConcept C3017936213 @default.
- W4225161010 hasConcept C33923547 @default.
- W4225161010 hasConcept C40993552 @default.
- W4225161010 hasConcept C41008148 @default.
- W4225161010 hasConcept C54355233 @default.
- W4225161010 hasConcept C55020928 @default.
- W4225161010 hasConcept C71924100 @default.
- W4225161010 hasConcept C81363708 @default.
- W4225161010 hasConcept C86803240 @default.
- W4225161010 hasConceptScore W4225161010C105702510 @default.
- W4225161010 hasConceptScore W4225161010C108583219 @default.
- W4225161010 hasConceptScore W4225161010C11413529 @default.
- W4225161010 hasConceptScore W4225161010C115961682 @default.
- W4225161010 hasConceptScore W4225161010C126838900 @default.
- W4225161010 hasConceptScore W4225161010C141071460 @default.
- W4225161010 hasConceptScore W4225161010C142724271 @default.
- W4225161010 hasConceptScore W4225161010C143409427 @default.
- W4225161010 hasConceptScore W4225161010C154945302 @default.
- W4225161010 hasConceptScore W4225161010C204787440 @default.
- W4225161010 hasConceptScore W4225161010C2524010 @default.
- W4225161010 hasConceptScore W4225161010C2776164576 @default.
- W4225161010 hasConceptScore W4225161010C2778112365 @default.
- W4225161010 hasConceptScore W4225161010C2778724333 @default.
- W4225161010 hasConceptScore W4225161010C2779162959 @default.
- W4225161010 hasConceptScore W4225161010C2780368125 @default.
- W4225161010 hasConceptScore W4225161010C2780550940 @default.
- W4225161010 hasConceptScore W4225161010C2908736133 @default.
- W4225161010 hasConceptScore W4225161010C29694066 @default.
- W4225161010 hasConceptScore W4225161010C2989005 @default.
- W4225161010 hasConceptScore W4225161010C3017936213 @default.
- W4225161010 hasConceptScore W4225161010C33923547 @default.
- W4225161010 hasConceptScore W4225161010C40993552 @default.