Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225162034> ?p ?o ?g. }
- W4225162034 endingPage "103380" @default.
- W4225162034 startingPage "103380" @default.
- W4225162034 abstract "Traditional spectral analysis is prone to integration and signals overlap. It makes the extracted information unavailable or inaccurate, limiting its application in the detection of complex components. Therefore, two-dimensional correlation spectroscopy (2D-COS) that was superior to traditional spectral analysis has been established, by extracting useful information under certain chemical or physical stimulus from a series of spectra to improve the spectral resolution. In this study, with the identification of the different origins and parts of Panax notoginseng as an example. First, as a comparison, the attenuated total reflection infrared spectroscopy (ATR-FTIR) of P. notoginseng samples combined with chemometric methods was applied to identify it. Then, we generated synchronous and asynchronous 2D-COS spectral images from the fingerprint regions in the spectrum, and established a Residual convolutional neural network (ResNet) to identify the different origins and parts. Finally, the externally verified was applied to evaluate the accuracy of the model. By comparison, the 2D-COS was more suitable for the identification of the origins and parts of P. notoginseng than traditional spectroscopy. The identification accuracy of these samples of synchronous 2D-COS spectral images in the training set and test set were both greater than 99%. And the results of the externally verified indicated that synchronous 2D-COS spectral images were significantly outperforming asynchronous 2D-COS spectral images, and the sensitivity, specificity, and accuracy of the samples are both better than 0.99. Furthermore, when the sample number was relatively small or large differences in sample number were large, the synchronous 2D-COS spectral images could also successfully distinguish the different origins and parts well of P. notoginseng . In general, the ResNet model could provide a better discriminant model, and perform high-resolution processing. • A two-dimensional correlation spectroscopy-based strategy was proposed for rapid authentication. • The spectral data were converted into 2D-COS spectral images. • Classification of different origins and parts of Panax notoginseng using 2D-COS spectral images combined with deep learning. • Provided a feasible strategy for quality control of herb medicines." @default.
- W4225162034 created "2022-05-01" @default.
- W4225162034 creator A5046704890 @default.
- W4225162034 creator A5051229659 @default.
- W4225162034 creator A5075581318 @default.
- W4225162034 creator A5080770327 @default.
- W4225162034 date "2022-05-01" @default.
- W4225162034 modified "2023-10-18" @default.
- W4225162034 title "An identification method of herbal medicines superior to traditional spectroscopy: Two-dimensional correlation spectral images combined with deep learning" @default.
- W4225162034 cites W1965895201 @default.
- W4225162034 cites W1975372451 @default.
- W4225162034 cites W1982691880 @default.
- W4225162034 cites W1985635711 @default.
- W4225162034 cites W2004021360 @default.
- W4225162034 cites W2005668729 @default.
- W4225162034 cites W2016135223 @default.
- W4225162034 cites W2025876953 @default.
- W4225162034 cites W2053883254 @default.
- W4225162034 cites W2060431841 @default.
- W4225162034 cites W2064724317 @default.
- W4225162034 cites W2075060140 @default.
- W4225162034 cites W2083531592 @default.
- W4225162034 cites W2109606373 @default.
- W4225162034 cites W2290147959 @default.
- W4225162034 cites W2328694828 @default.
- W4225162034 cites W2599144507 @default.
- W4225162034 cites W2730529118 @default.
- W4225162034 cites W2755364685 @default.
- W4225162034 cites W2765854388 @default.
- W4225162034 cites W2769382839 @default.
- W4225162034 cites W2790459691 @default.
- W4225162034 cites W2802170703 @default.
- W4225162034 cites W2883981108 @default.
- W4225162034 cites W2889159450 @default.
- W4225162034 cites W2896571343 @default.
- W4225162034 cites W2919115771 @default.
- W4225162034 cites W2979893944 @default.
- W4225162034 cites W3047855151 @default.
- W4225162034 cites W3081844508 @default.
- W4225162034 cites W3158568467 @default.
- W4225162034 cites W3159876178 @default.
- W4225162034 cites W3169268368 @default.
- W4225162034 cites W3183355483 @default.
- W4225162034 cites W4255431852 @default.
- W4225162034 doi "https://doi.org/10.1016/j.vibspec.2022.103380" @default.
- W4225162034 hasPublicationYear "2022" @default.
- W4225162034 type Work @default.
- W4225162034 citedByCount "2" @default.
- W4225162034 countsByYear W42251620342023 @default.
- W4225162034 crossrefType "journal-article" @default.
- W4225162034 hasAuthorship W4225162034A5046704890 @default.
- W4225162034 hasAuthorship W4225162034A5051229659 @default.
- W4225162034 hasAuthorship W4225162034A5075581318 @default.
- W4225162034 hasAuthorship W4225162034A5080770327 @default.
- W4225162034 hasConcept C116834253 @default.
- W4225162034 hasConcept C117220453 @default.
- W4225162034 hasConcept C121332964 @default.
- W4225162034 hasConcept C153180895 @default.
- W4225162034 hasConcept C154945302 @default.
- W4225162034 hasConcept C186060115 @default.
- W4225162034 hasConcept C192562407 @default.
- W4225162034 hasConcept C2524010 @default.
- W4225162034 hasConcept C32891209 @default.
- W4225162034 hasConcept C33923547 @default.
- W4225162034 hasConcept C41008148 @default.
- W4225162034 hasConcept C556039675 @default.
- W4225162034 hasConcept C59822182 @default.
- W4225162034 hasConcept C62520636 @default.
- W4225162034 hasConcept C71924100 @default.
- W4225162034 hasConcept C86803240 @default.
- W4225162034 hasConceptScore W4225162034C116834253 @default.
- W4225162034 hasConceptScore W4225162034C117220453 @default.
- W4225162034 hasConceptScore W4225162034C121332964 @default.
- W4225162034 hasConceptScore W4225162034C153180895 @default.
- W4225162034 hasConceptScore W4225162034C154945302 @default.
- W4225162034 hasConceptScore W4225162034C186060115 @default.
- W4225162034 hasConceptScore W4225162034C192562407 @default.
- W4225162034 hasConceptScore W4225162034C2524010 @default.
- W4225162034 hasConceptScore W4225162034C32891209 @default.
- W4225162034 hasConceptScore W4225162034C33923547 @default.
- W4225162034 hasConceptScore W4225162034C41008148 @default.
- W4225162034 hasConceptScore W4225162034C556039675 @default.
- W4225162034 hasConceptScore W4225162034C59822182 @default.
- W4225162034 hasConceptScore W4225162034C62520636 @default.
- W4225162034 hasConceptScore W4225162034C71924100 @default.
- W4225162034 hasConceptScore W4225162034C86803240 @default.
- W4225162034 hasFunder F4320323193 @default.
- W4225162034 hasFunder F4320335595 @default.
- W4225162034 hasFunder F4320336602 @default.
- W4225162034 hasLocation W42251620341 @default.
- W4225162034 hasOpenAccess W4225162034 @default.
- W4225162034 hasPrimaryLocation W42251620341 @default.
- W4225162034 hasRelatedWork W2033914206 @default.
- W4225162034 hasRelatedWork W2046077695 @default.
- W4225162034 hasRelatedWork W2146076056 @default.
- W4225162034 hasRelatedWork W2163831990 @default.
- W4225162034 hasRelatedWork W2378160586 @default.
- W4225162034 hasRelatedWork W2748952813 @default.