Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225164585> ?p ?o ?g. }
- W4225164585 endingPage "142" @default.
- W4225164585 startingPage "128" @default.
- W4225164585 abstract "DNA carries the genetic information of almost all the living beings on the earth. The flow of genetic information takes place by a series of transcription and translation reactions in which the DNA gets converted into amino-acid sequences which determine the phenotype of an organism. This property of DNA has been used in the proposed CBIR technique in which the images are first stored in DNA sequences and then their corresponding amino-acid sequences are extracted which are used to form the feature-vectors. This not only ensures the reduction of the dimension of the feature-vectors but also the preservation of the necessary information. These feature-vectors are then given as input to various classifiers for training and testing purpose. Ensemble learning is then applied to enhance the retrieval efficiency of the algorithm. The proposed algorithm is a novel approach that uses the efficiency of DNA-based computing to increase the efficiency of classifiers for image retrieval. Experimental results show that the proposed method is more efficient than the existing state-of-the-art algorithms." @default.
- W4225164585 created "2022-05-01" @default.
- W4225164585 creator A5055683087 @default.
- W4225164585 creator A5061224057 @default.
- W4225164585 creator A5078569384 @default.
- W4225164585 creator A5090573951 @default.
- W4225164585 date "2023-01-01" @default.
- W4225164585 modified "2023-10-16" @default.
- W4225164585 title "Content-Based Image Retrieval Using DNA Transcription and Translation" @default.
- W4225164585 cites W1505396251 @default.
- W4225164585 cites W1531110067 @default.
- W4225164585 cites W1692048711 @default.
- W4225164585 cites W1977312644 @default.
- W4225164585 cites W1982252135 @default.
- W4225164585 cites W2001773889 @default.
- W4225164585 cites W2003620172 @default.
- W4225164585 cites W2017789182 @default.
- W4225164585 cites W2020018365 @default.
- W4225164585 cites W2035610884 @default.
- W4225164585 cites W2037227137 @default.
- W4225164585 cites W2038752770 @default.
- W4225164585 cites W2045381533 @default.
- W4225164585 cites W2045947690 @default.
- W4225164585 cites W2060995975 @default.
- W4225164585 cites W2083307479 @default.
- W4225164585 cites W2087544865 @default.
- W4225164585 cites W2105935266 @default.
- W4225164585 cites W2110112487 @default.
- W4225164585 cites W2127674396 @default.
- W4225164585 cites W2128543433 @default.
- W4225164585 cites W2165819593 @default.
- W4225164585 cites W2166828762 @default.
- W4225164585 cites W2221243399 @default.
- W4225164585 cites W2409822643 @default.
- W4225164585 cites W2520000913 @default.
- W4225164585 cites W2538244214 @default.
- W4225164585 cites W2554892747 @default.
- W4225164585 cites W2583836778 @default.
- W4225164585 cites W2586937979 @default.
- W4225164585 cites W2618373950 @default.
- W4225164585 cites W2746910024 @default.
- W4225164585 cites W2753122486 @default.
- W4225164585 cites W2782988845 @default.
- W4225164585 cites W2790291405 @default.
- W4225164585 cites W2804846320 @default.
- W4225164585 cites W2805886241 @default.
- W4225164585 cites W2808603681 @default.
- W4225164585 cites W2811426445 @default.
- W4225164585 cites W2885711723 @default.
- W4225164585 cites W2938495304 @default.
- W4225164585 cites W2938600289 @default.
- W4225164585 cites W2941785734 @default.
- W4225164585 cites W2963561675 @default.
- W4225164585 cites W2970285698 @default.
- W4225164585 cites W3000030185 @default.
- W4225164585 cites W3004887560 @default.
- W4225164585 cites W3014459832 @default.
- W4225164585 cites W3020836344 @default.
- W4225164585 cites W3023411060 @default.
- W4225164585 cites W3023665079 @default.
- W4225164585 cites W3034759415 @default.
- W4225164585 cites W3036625760 @default.
- W4225164585 cites W3100449589 @default.
- W4225164585 cites W3102785203 @default.
- W4225164585 cites W3116932882 @default.
- W4225164585 cites W3172710310 @default.
- W4225164585 cites W3184875263 @default.
- W4225164585 cites W3188114814 @default.
- W4225164585 cites W4200321850 @default.
- W4225164585 cites W4213253307 @default.
- W4225164585 cites W890353165 @default.
- W4225164585 doi "https://doi.org/10.1109/tnb.2022.3169701" @default.
- W4225164585 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35486561" @default.
- W4225164585 hasPublicationYear "2023" @default.
- W4225164585 type Work @default.
- W4225164585 citedByCount "0" @default.
- W4225164585 crossrefType "journal-article" @default.
- W4225164585 hasAuthorship W4225164585A5055683087 @default.
- W4225164585 hasAuthorship W4225164585A5061224057 @default.
- W4225164585 hasAuthorship W4225164585A5078569384 @default.
- W4225164585 hasAuthorship W4225164585A5090573951 @default.
- W4225164585 hasConcept C104317684 @default.
- W4225164585 hasConcept C105580179 @default.
- W4225164585 hasConcept C11413529 @default.
- W4225164585 hasConcept C138885662 @default.
- W4225164585 hasConcept C149364088 @default.
- W4225164585 hasConcept C153180895 @default.
- W4225164585 hasConcept C154945302 @default.
- W4225164585 hasConcept C179926584 @default.
- W4225164585 hasConcept C2776401178 @default.
- W4225164585 hasConcept C41008148 @default.
- W4225164585 hasConcept C41895202 @default.
- W4225164585 hasConcept C45374587 @default.
- W4225164585 hasConcept C51679486 @default.
- W4225164585 hasConcept C52622490 @default.
- W4225164585 hasConcept C54355233 @default.
- W4225164585 hasConcept C552990157 @default.
- W4225164585 hasConcept C82047324 @default.