Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225242586> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4225242586 endingPage "529" @default.
- W4225242586 startingPage "523" @default.
- W4225242586 abstract "Lung cancer is the second common cancer and a leading cause of cancer-related death in the US. Unfavorably, the prevalence of using low-dose computed tomography (LDCT) for lung cancer prevention in the US has remained below 4% over time. The purpose of this study is to develop machine learning models to analyze interactive pathways of factors associated with lung cancer screening use with the LDCT. The study was based on the data retrieved from the 2018 Behavioral Risk Factor Surveillance System. After dealing with missing values, 86 variables and 710 samples were included in the decision tree model and the random forest model. The data were randomly split into training (569/710, 80%) and testing (141/710, 20%) sets. Gini impurity is used to select and determine the optimal split of the nodes in the model. Machine learning performance was evaluated by model accuracy, sensitivity, specificity, F1 score, etc. The average performance metrics of the decision tree model were obtained: average accuracy is 67.78%, F1 score is 65.76%, sensitivity is 62.52%, and specificity is 73.57% based on 100 runs. In the decision model, nine interactive pathways were identified among the following factors: average drinks per month, BMI, diabetes, first smoke age, years of smoking, year(s) quit smoking, sex, last sigmoidoscopy or colonoscopy, last dental visit, general health, insurance, education, and last Pap test. Lung cancer screening utilization is the result of the interplay of multifactors. Lung cancer screening programs in clinical settings should not only focus on patients’ smoking behaviors but also consider other socioeconomic factors." @default.
- W4225242586 created "2022-05-01" @default.
- W4225242586 creator A5025924166 @default.
- W4225242586 creator A5027862454 @default.
- W4225242586 creator A5029749535 @default.
- W4225242586 creator A5077743963 @default.
- W4225242586 date "2022-01-17" @default.
- W4225242586 modified "2023-09-29" @default.
- W4225242586 title "Predictors of underutilization of lung cancer screening: a machine learning approach" @default.
- W4225242586 cites W130099911 @default.
- W4225242586 cites W1789752607 @default.
- W4225242586 cites W1999105991 @default.
- W4225242586 cites W2059363182 @default.
- W4225242586 cites W2065207602 @default.
- W4225242586 cites W2081423481 @default.
- W4225242586 cites W2143839958 @default.
- W4225242586 cites W2166521422 @default.
- W4225242586 cites W2393905053 @default.
- W4225242586 cites W2515934579 @default.
- W4225242586 cites W2563848751 @default.
- W4225242586 cites W2585225471 @default.
- W4225242586 cites W2586491492 @default.
- W4225242586 cites W2899434936 @default.
- W4225242586 cites W2901436818 @default.
- W4225242586 cites W2911188335 @default.
- W4225242586 cites W2921168875 @default.
- W4225242586 cites W2967991710 @default.
- W4225242586 cites W2999417355 @default.
- W4225242586 cites W3009294386 @default.
- W4225242586 cites W3047374055 @default.
- W4225242586 cites W3091001335 @default.
- W4225242586 cites W3121411168 @default.
- W4225242586 doi "https://doi.org/10.1097/cej.0000000000000742" @default.
- W4225242586 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35044988" @default.
- W4225242586 hasPublicationYear "2022" @default.
- W4225242586 type Work @default.
- W4225242586 citedByCount "4" @default.
- W4225242586 countsByYear W42252425862022 @default.
- W4225242586 countsByYear W42252425862023 @default.
- W4225242586 crossrefType "journal-article" @default.
- W4225242586 hasAuthorship W4225242586A5025924166 @default.
- W4225242586 hasAuthorship W4225242586A5027862454 @default.
- W4225242586 hasAuthorship W4225242586A5029749535 @default.
- W4225242586 hasAuthorship W4225242586A5077743963 @default.
- W4225242586 hasConcept C119857082 @default.
- W4225242586 hasConcept C121608353 @default.
- W4225242586 hasConcept C126322002 @default.
- W4225242586 hasConcept C142724271 @default.
- W4225242586 hasConcept C154945302 @default.
- W4225242586 hasConcept C1862650 @default.
- W4225242586 hasConcept C2776256026 @default.
- W4225242586 hasConcept C2777405583 @default.
- W4225242586 hasConcept C2777843972 @default.
- W4225242586 hasConcept C2778435480 @default.
- W4225242586 hasConcept C2779896975 @default.
- W4225242586 hasConcept C41008148 @default.
- W4225242586 hasConcept C526805850 @default.
- W4225242586 hasConcept C71924100 @default.
- W4225242586 hasConcept C84525736 @default.
- W4225242586 hasConceptScore W4225242586C119857082 @default.
- W4225242586 hasConceptScore W4225242586C121608353 @default.
- W4225242586 hasConceptScore W4225242586C126322002 @default.
- W4225242586 hasConceptScore W4225242586C142724271 @default.
- W4225242586 hasConceptScore W4225242586C154945302 @default.
- W4225242586 hasConceptScore W4225242586C1862650 @default.
- W4225242586 hasConceptScore W4225242586C2776256026 @default.
- W4225242586 hasConceptScore W4225242586C2777405583 @default.
- W4225242586 hasConceptScore W4225242586C2777843972 @default.
- W4225242586 hasConceptScore W4225242586C2778435480 @default.
- W4225242586 hasConceptScore W4225242586C2779896975 @default.
- W4225242586 hasConceptScore W4225242586C41008148 @default.
- W4225242586 hasConceptScore W4225242586C526805850 @default.
- W4225242586 hasConceptScore W4225242586C71924100 @default.
- W4225242586 hasConceptScore W4225242586C84525736 @default.
- W4225242586 hasIssue "6" @default.
- W4225242586 hasLocation W42252425861 @default.
- W4225242586 hasLocation W42252425862 @default.
- W4225242586 hasOpenAccess W4225242586 @default.
- W4225242586 hasPrimaryLocation W42252425861 @default.
- W4225242586 hasRelatedWork W1974508703 @default.
- W4225242586 hasRelatedWork W2060405381 @default.
- W4225242586 hasRelatedWork W2103579100 @default.
- W4225242586 hasRelatedWork W2143929290 @default.
- W4225242586 hasRelatedWork W2186917042 @default.
- W4225242586 hasRelatedWork W2341168916 @default.
- W4225242586 hasRelatedWork W2345312722 @default.
- W4225242586 hasRelatedWork W2555159258 @default.
- W4225242586 hasRelatedWork W2556026584 @default.
- W4225242586 hasRelatedWork W2598703366 @default.
- W4225242586 hasVolume "31" @default.
- W4225242586 isParatext "false" @default.
- W4225242586 isRetracted "false" @default.
- W4225242586 workType "article" @default.