Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225252879> ?p ?o ?g. }
- W4225252879 abstract "Abstract This in vitro study aimed to use failure stress and implant abutment interface (IAI) microgap size to find the compromised axial angle range of angulated zirconia abutments with a titanium base in narrow diameter implants in the esthetic region. A three‐dimensional (3D) finite element model of maxillary central incisor implant prosthesis was reconstructed. Angulated zirconia abutments (0°, 15°, 30°, and − 15°) with a titanium base in narrow diameter implants (3.3 × 12 mm, Bone level, Roxolid SLActive, Straumann AG, Switzerland) were designed to simulate clinical scenarios of buccal inclination 0°, 15°, and 30°, and palatal inclination 15° of the implant long axis. Straight titanium abutment and pure titanium implant were used as two control groups. An oblique force at 30° inclination to the long axis of the crown was applied 3 mm below the incisal edge on the palatal surface of the prosthesis. Under simulated dynamic chewing force, the stress distribution of the implant components and surrounding bone were investigated. The relative micromotion displacement between the implant and abutment models at the IAI area was recorded, and the influence of tightening torque on the IAI microgap was evaluated. The angulation of the zirconia abutment could affect the stress value and IAI microgap of implant restorations. When the zirconia abutment angle increased from −15° to 30°, the stress on the central screw, titanium base, and surrounding bone tissue gradually increased by 9%, 20%, and 23%, respectively. The stress levels of the 30° zirconia abutment group showed the risk of exceeding the threshold. When the long axis of the implant was inclined in the palatal direction, the −15° angle abutment reduced the stress by 3% and reduced the strain level of the implant system by 17% and the surrounding bone tissue by 26%. Under simulated dynamic chewing load, the displacement between the implants and the abutment occurred in each group of the implant system, and the amplitude of the micromotion fluctuated with the change in the load. The horizontal displacement caused a 0.075–1.459 μm palatal microgap and 0.091–0.945 μm distal microgap in the IAI. The microgap between the lip and palate was more evident, and the vertical displacement difference was manifested as the abutment sliding down the implant. In cases of upper implant restoration with difficulties such as small gaps and axial defects in the esthetic zone, the abutment angle is highly recommended to be in a slightly palatal‐inclined direction or to not exceed 15° when the implant is inclined to the labial side to avoid mechanical damage and leakage caused by the appearance of excessively large micromotion gaps." @default.
- W4225252879 created "2022-05-04" @default.
- W4225252879 creator A5013818071 @default.
- W4225252879 creator A5041582911 @default.
- W4225252879 creator A5080053870 @default.
- W4225252879 date "2022-05-22" @default.
- W4225252879 modified "2023-09-27" @default.
- W4225252879 title "Stress distribution and microgap formation in angulated zirconia abutments with a titanium base in narrow diameter implants: A <scp>3D</scp> finite element analysis" @default.
- W4225252879 cites W1591632996 @default.
- W4225252879 cites W1930249896 @default.
- W4225252879 cites W1948994903 @default.
- W4225252879 cites W1974510239 @default.
- W4225252879 cites W1990814671 @default.
- W4225252879 cites W2027931156 @default.
- W4225252879 cites W2054852236 @default.
- W4225252879 cites W2058820593 @default.
- W4225252879 cites W2060026298 @default.
- W4225252879 cites W2062332573 @default.
- W4225252879 cites W2078834570 @default.
- W4225252879 cites W2081869726 @default.
- W4225252879 cites W2086372166 @default.
- W4225252879 cites W2087828410 @default.
- W4225252879 cites W2088445011 @default.
- W4225252879 cites W2096498950 @default.
- W4225252879 cites W2101498029 @default.
- W4225252879 cites W2102142926 @default.
- W4225252879 cites W2102981935 @default.
- W4225252879 cites W2105720773 @default.
- W4225252879 cites W2106962504 @default.
- W4225252879 cites W2118625924 @default.
- W4225252879 cites W2128513439 @default.
- W4225252879 cites W2130009228 @default.
- W4225252879 cites W2133565952 @default.
- W4225252879 cites W2137326003 @default.
- W4225252879 cites W2141992812 @default.
- W4225252879 cites W2153065889 @default.
- W4225252879 cites W2167715043 @default.
- W4225252879 cites W2168995197 @default.
- W4225252879 cites W2171068731 @default.
- W4225252879 cites W2184923006 @default.
- W4225252879 cites W2322320542 @default.
- W4225252879 cites W2401283528 @default.
- W4225252879 cites W2467444169 @default.
- W4225252879 cites W2470235870 @default.
- W4225252879 cites W2515712957 @default.
- W4225252879 cites W2521802464 @default.
- W4225252879 cites W2594273701 @default.
- W4225252879 cites W2719134439 @default.
- W4225252879 cites W2720021267 @default.
- W4225252879 cites W2752448794 @default.
- W4225252879 cites W2808728711 @default.
- W4225252879 cites W2896553373 @default.
- W4225252879 cites W2908957582 @default.
- W4225252879 cites W2947601713 @default.
- W4225252879 cites W3109907259 @default.
- W4225252879 doi "https://doi.org/10.1002/cnm.3610" @default.
- W4225252879 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35490303" @default.
- W4225252879 hasPublicationYear "2022" @default.
- W4225252879 type Work @default.
- W4225252879 citedByCount "1" @default.
- W4225252879 countsByYear W42252528792023 @default.
- W4225252879 crossrefType "journal-article" @default.
- W4225252879 hasAuthorship W4225252879A5013818071 @default.
- W4225252879 hasAuthorship W4225252879A5041582911 @default.
- W4225252879 hasAuthorship W4225252879A5080053870 @default.
- W4225252879 hasConcept C123609680 @default.
- W4225252879 hasConcept C127413603 @default.
- W4225252879 hasConcept C134132462 @default.
- W4225252879 hasConcept C135628077 @default.
- W4225252879 hasConcept C138885662 @default.
- W4225252879 hasConcept C141071460 @default.
- W4225252879 hasConcept C159985019 @default.
- W4225252879 hasConcept C191897082 @default.
- W4225252879 hasConcept C192562407 @default.
- W4225252879 hasConcept C199343813 @default.
- W4225252879 hasConcept C21036866 @default.
- W4225252879 hasConcept C2778400979 @default.
- W4225252879 hasConcept C2780338112 @default.
- W4225252879 hasConcept C2781411149 @default.
- W4225252879 hasConcept C28539199 @default.
- W4225252879 hasConcept C2908906697 @default.
- W4225252879 hasConcept C29694066 @default.
- W4225252879 hasConcept C41895202 @default.
- W4225252879 hasConcept C48777230 @default.
- W4225252879 hasConcept C506065880 @default.
- W4225252879 hasConcept C59085676 @default.
- W4225252879 hasConcept C66938386 @default.
- W4225252879 hasConcept C71924100 @default.
- W4225252879 hasConceptScore W4225252879C123609680 @default.
- W4225252879 hasConceptScore W4225252879C127413603 @default.
- W4225252879 hasConceptScore W4225252879C134132462 @default.
- W4225252879 hasConceptScore W4225252879C135628077 @default.
- W4225252879 hasConceptScore W4225252879C138885662 @default.
- W4225252879 hasConceptScore W4225252879C141071460 @default.
- W4225252879 hasConceptScore W4225252879C159985019 @default.
- W4225252879 hasConceptScore W4225252879C191897082 @default.
- W4225252879 hasConceptScore W4225252879C192562407 @default.
- W4225252879 hasConceptScore W4225252879C199343813 @default.
- W4225252879 hasConceptScore W4225252879C21036866 @default.
- W4225252879 hasConceptScore W4225252879C2778400979 @default.