Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225253003> ?p ?o ?g. }
- W4225253003 endingPage "140480" @default.
- W4225253003 startingPage "140480" @default.
- W4225253003 abstract "• NAD + /NADH-dependent FDH fused with solid-binding peptide retain biocatalytic activity. • Solid-binding of fusion enzymes depends on fusion site and tertiary structure. • Sbp fusion renders enzyme to electrode for facile interfacial electron transfer. • A platform for direct electrical contact of NAD + /NADH-dependent enzymes on the electrode surface is developed. • NADH oxidation and NAD + reduction at low overpotential for bioelectronics applications is established. NAD + /NADH-dependent redox enzymes constitute most known oxidoreductases, but their inherent complexity due to their reliance on the diffusional nature of soluble cofactors limits their application in bioelectrocatalytic systems. Herein, a gold-binding peptide (gbp) is genetically introduced at the NAD + /NADH-dependent formate dehydrogenase (FDH) to add a non-native gold-binding activity to directly wiring the enzyme to the electrode surface. Our gold-binding kinetics studies on the native and synthetic FDHs revealed that the gold-binding properties of the fused enzymes are highly dependent on the fusion site and that the tertiary structure of the fusion enzyme controls the efficiency of gold-binding domain display fusion. As such, the highest gold-binding activity was observed with the fusion of gbp at the C-terminus (FDH gbpC ), whereas binding at both termini FDH gbpNC and FDH gbpN appeared to be less active. Moreover, the presence of gbp increased the stability of an integrated enzyme electrode in the bioelectrocatalytic reactions occurring at the enzyme-electrode interface. Direct electrochemical NADH oxidation produced by the enzymatic reaction in the presence of formate and NAD + was observed at a low overpotential range of −0.45 to −0.15 V vs Ag/Ag + for all types of enzyme-electrodes, which indicates direct-electrical contact between the cofactor binding site and the electrode surface. The enhanced electron transfer kinetics could be explained by the shorter distance between the cofactor-binding site and electrode surface. Furthermore, the addition of NADH and CO 2 increased the reductive catalytic current, which suggested the enzymatic CO 2 reduction to formate using a hydride of NADH and a subsequent reduction of the generated NAD + . We demonstrated that biotechnology can directly contact enzymes onto the electrode surface, which has proven to be a reliable method for bio-electronic applications, especially involving NAD + /NADH-dependent enzymes." @default.
- W4225253003 created "2022-05-04" @default.
- W4225253003 creator A5009049089 @default.
- W4225253003 creator A5013971756 @default.
- W4225253003 creator A5019847792 @default.
- W4225253003 creator A5049125711 @default.
- W4225253003 creator A5067320552 @default.
- W4225253003 creator A5082327734 @default.
- W4225253003 creator A5083021475 @default.
- W4225253003 creator A5089363370 @default.
- W4225253003 date "2022-07-01" @default.
- W4225253003 modified "2023-09-30" @default.
- W4225253003 title "Direct electrical contact of NAD+/NADH-dependent dehydrogenase on electrode surface enabled by non-native solid-binding peptide as a molecular binder" @default.
- W4225253003 cites W1629830706 @default.
- W4225253003 cites W1972801291 @default.
- W4225253003 cites W1975249312 @default.
- W4225253003 cites W1978534780 @default.
- W4225253003 cites W1984909861 @default.
- W4225253003 cites W1986210173 @default.
- W4225253003 cites W1987134040 @default.
- W4225253003 cites W1988662169 @default.
- W4225253003 cites W1989037364 @default.
- W4225253003 cites W1997983607 @default.
- W4225253003 cites W1998064253 @default.
- W4225253003 cites W2001453154 @default.
- W4225253003 cites W2013569842 @default.
- W4225253003 cites W2013865069 @default.
- W4225253003 cites W2024218463 @default.
- W4225253003 cites W2025201915 @default.
- W4225253003 cites W2033595229 @default.
- W4225253003 cites W2035093543 @default.
- W4225253003 cites W2037312364 @default.
- W4225253003 cites W2037704631 @default.
- W4225253003 cites W2047758342 @default.
- W4225253003 cites W2059085849 @default.
- W4225253003 cites W2078146840 @default.
- W4225253003 cites W2079425450 @default.
- W4225253003 cites W2085348726 @default.
- W4225253003 cites W2086456394 @default.
- W4225253003 cites W2091395033 @default.
- W4225253003 cites W2091943169 @default.
- W4225253003 cites W2104756056 @default.
- W4225253003 cites W2131043685 @default.
- W4225253003 cites W2155201844 @default.
- W4225253003 cites W2177758215 @default.
- W4225253003 cites W2313895326 @default.
- W4225253003 cites W2313958084 @default.
- W4225253003 cites W2365773495 @default.
- W4225253003 cites W2616010068 @default.
- W4225253003 cites W2636621353 @default.
- W4225253003 cites W2754349199 @default.
- W4225253003 cites W2898668123 @default.
- W4225253003 cites W2899718801 @default.
- W4225253003 cites W2899980179 @default.
- W4225253003 cites W2913158274 @default.
- W4225253003 cites W2914809955 @default.
- W4225253003 cites W2922075085 @default.
- W4225253003 cites W2945389650 @default.
- W4225253003 cites W2952641183 @default.
- W4225253003 cites W2989924003 @default.
- W4225253003 cites W3039829027 @default.
- W4225253003 cites W3047369032 @default.
- W4225253003 cites W3134524566 @default.
- W4225253003 cites W3183794805 @default.
- W4225253003 cites W3210234989 @default.
- W4225253003 cites W815560435 @default.
- W4225253003 doi "https://doi.org/10.1016/j.electacta.2022.140480" @default.
- W4225253003 hasPublicationYear "2022" @default.
- W4225253003 type Work @default.
- W4225253003 citedByCount "2" @default.
- W4225253003 countsByYear W42252530032023 @default.
- W4225253003 crossrefType "journal-article" @default.
- W4225253003 hasAuthorship W4225253003A5009049089 @default.
- W4225253003 hasAuthorship W4225253003A5013971756 @default.
- W4225253003 hasAuthorship W4225253003A5019847792 @default.
- W4225253003 hasAuthorship W4225253003A5049125711 @default.
- W4225253003 hasAuthorship W4225253003A5067320552 @default.
- W4225253003 hasAuthorship W4225253003A5082327734 @default.
- W4225253003 hasAuthorship W4225253003A5083021475 @default.
- W4225253003 hasAuthorship W4225253003A5089363370 @default.
- W4225253003 hasConcept C147789679 @default.
- W4225253003 hasConcept C171250308 @default.
- W4225253003 hasConcept C17525397 @default.
- W4225253003 hasConcept C181199279 @default.
- W4225253003 hasConcept C185592680 @default.
- W4225253003 hasConcept C192562407 @default.
- W4225253003 hasConcept C2776317432 @default.
- W4225253003 hasConcept C2779281246 @default.
- W4225253003 hasConcept C55493867 @default.
- W4225253003 hasConcept C75520062 @default.
- W4225253003 hasConceptScore W4225253003C147789679 @default.
- W4225253003 hasConceptScore W4225253003C171250308 @default.
- W4225253003 hasConceptScore W4225253003C17525397 @default.
- W4225253003 hasConceptScore W4225253003C181199279 @default.
- W4225253003 hasConceptScore W4225253003C185592680 @default.
- W4225253003 hasConceptScore W4225253003C192562407 @default.
- W4225253003 hasConceptScore W4225253003C2776317432 @default.
- W4225253003 hasConceptScore W4225253003C2779281246 @default.