Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225261422> ?p ?o ?g. }
- W4225261422 abstract "Recent advances in brain clearing and imaging have made it possible to image entire mammalian brains at sub-micron resolution. These images offer the potential to assemble brain-wide atlases of neuron morphology, but manual neuron reconstruction remains a bottleneck. Several automatic reconstruction algorithms exist, but most focus on single neuron images. In this paper, we present a probabilistic reconstruction method, ViterBrain, which combines a hidden Markov state process that encodes neuron geometry with a random field appearance model of neuron fluorescence. ViterBrain utilizes dynamic programming to compute the global maximizer of what we call the most probable neuron path. We applied our algorithm to imperfect image segmentations, and showed that it can follow axons in the presence of noise or nearby neurons. We also provide an interactive framework where users can trace neurons by fixing start and endpoints. ViterBrain is available in our open-source Python package brainlit." @default.
- W4225261422 created "2022-05-04" @default.
- W4225261422 creator A5020447416 @default.
- W4225261422 creator A5033151214 @default.
- W4225261422 creator A5056441901 @default.
- W4225261422 creator A5082110058 @default.
- W4225261422 creator A5082725826 @default.
- W4225261422 date "2022-04-25" @default.
- W4225261422 modified "2023-10-18" @default.
- W4225261422 title "Hidden Markov modeling for maximum probability neuron reconstruction" @default.
- W4225261422 cites W1885626623 @default.
- W4225261422 cites W1901129140 @default.
- W4225261422 cites W1981329364 @default.
- W4225261422 cites W1992621211 @default.
- W4225261422 cites W2018227909 @default.
- W4225261422 cites W2019305522 @default.
- W4225261422 cites W2036901575 @default.
- W4225261422 cites W2086921140 @default.
- W4225261422 cites W2099111195 @default.
- W4225261422 cites W2104095591 @default.
- W4225261422 cites W2105594594 @default.
- W4225261422 cites W2108436498 @default.
- W4225261422 cites W2124257654 @default.
- W4225261422 cites W2142384583 @default.
- W4225261422 cites W2153965609 @default.
- W4225261422 cites W2156531304 @default.
- W4225261422 cites W2169528473 @default.
- W4225261422 cites W2171330332 @default.
- W4225261422 cites W2227557434 @default.
- W4225261422 cites W2256981962 @default.
- W4225261422 cites W2483701722 @default.
- W4225261422 cites W2571219130 @default.
- W4225261422 cites W2587001086 @default.
- W4225261422 cites W2594660495 @default.
- W4225261422 cites W2600862990 @default.
- W4225261422 cites W2884739365 @default.
- W4225261422 cites W2903771707 @default.
- W4225261422 cites W2912059704 @default.
- W4225261422 cites W2925806435 @default.
- W4225261422 cites W2950062384 @default.
- W4225261422 cites W2957395818 @default.
- W4225261422 cites W2966593583 @default.
- W4225261422 cites W2968844558 @default.
- W4225261422 cites W2971899185 @default.
- W4225261422 cites W2975634117 @default.
- W4225261422 cites W3022214373 @default.
- W4225261422 cites W3080232649 @default.
- W4225261422 cites W3103145119 @default.
- W4225261422 cites W3105982350 @default.
- W4225261422 cites W3194521325 @default.
- W4225261422 cites W3202751057 @default.
- W4225261422 cites W4243863038 @default.
- W4225261422 doi "https://doi.org/10.1038/s42003-022-03320-0" @default.
- W4225261422 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35468989" @default.
- W4225261422 hasPublicationYear "2022" @default.
- W4225261422 type Work @default.
- W4225261422 citedByCount "2" @default.
- W4225261422 countsByYear W42252614222022 @default.
- W4225261422 countsByYear W42252614222023 @default.
- W4225261422 crossrefType "journal-article" @default.
- W4225261422 hasAuthorship W4225261422A5020447416 @default.
- W4225261422 hasAuthorship W4225261422A5033151214 @default.
- W4225261422 hasAuthorship W4225261422A5056441901 @default.
- W4225261422 hasAuthorship W4225261422A5082110058 @default.
- W4225261422 hasAuthorship W4225261422A5082725826 @default.
- W4225261422 hasBestOaLocation W42252614221 @default.
- W4225261422 hasConcept C11413529 @default.
- W4225261422 hasConcept C153180895 @default.
- W4225261422 hasConcept C154945302 @default.
- W4225261422 hasConcept C169760540 @default.
- W4225261422 hasConcept C186565885 @default.
- W4225261422 hasConcept C2778794669 @default.
- W4225261422 hasConcept C31972630 @default.
- W4225261422 hasConcept C41008148 @default.
- W4225261422 hasConcept C50644808 @default.
- W4225261422 hasConcept C86803240 @default.
- W4225261422 hasConceptScore W4225261422C11413529 @default.
- W4225261422 hasConceptScore W4225261422C153180895 @default.
- W4225261422 hasConceptScore W4225261422C154945302 @default.
- W4225261422 hasConceptScore W4225261422C169760540 @default.
- W4225261422 hasConceptScore W4225261422C186565885 @default.
- W4225261422 hasConceptScore W4225261422C2778794669 @default.
- W4225261422 hasConceptScore W4225261422C31972630 @default.
- W4225261422 hasConceptScore W4225261422C41008148 @default.
- W4225261422 hasConceptScore W4225261422C50644808 @default.
- W4225261422 hasConceptScore W4225261422C86803240 @default.
- W4225261422 hasFunder F4320332161 @default.
- W4225261422 hasIssue "1" @default.
- W4225261422 hasLocation W42252614221 @default.
- W4225261422 hasLocation W42252614222 @default.
- W4225261422 hasLocation W42252614223 @default.
- W4225261422 hasLocation W42252614224 @default.
- W4225261422 hasOpenAccess W4225261422 @default.
- W4225261422 hasPrimaryLocation W42252614221 @default.
- W4225261422 hasRelatedWork W1891287906 @default.
- W4225261422 hasRelatedWork W1969923398 @default.
- W4225261422 hasRelatedWork W2036807459 @default.
- W4225261422 hasRelatedWork W2058170566 @default.
- W4225261422 hasRelatedWork W2166024367 @default.
- W4225261422 hasRelatedWork W2229312674 @default.