Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225264236> ?p ?o ?g. }
- W4225264236 abstract "The mainstream crowd counting methods usually utilize the convolution neural network (CNN) to regress a density map, requiring point-level annotations. However, annotating each person with a point is an expensive and laborious process. During the testing phase, the point-level annotations are not considered to evaluate the counting accuracy, which means the point-level annotations are redundant. Hence, it is desirable to develop weakly-supervised counting methods that just rely on count-level annotations, a more economical way of labeling. Current weakly-supervised counting methods adopt the CNN to regress a total count of the crowd by an image-to-count paradigm. However, having limited receptive fields for context modeling is an intrinsic limitation of these weakly-supervised CNN-based methods. These methods thus cannot achieve satisfactory performance, with limited applications in the real world. The transformer is a popular sequence-to-sequence prediction model in natural language processing (NLP), which contains a global receptive field. In this paper, we propose TransCrowd, which reformulates the weakly-supervised crowd counting problem from the perspective of sequence-to-count based on transformers. We observe that the proposed TransCrowd can effectively extract the semantic crowd information by using the self-attention mechanism of transformer. To the best of our knowledge, this is the first work to adopt a pure transformer for crowd counting research. Experiments on five benchmark datasets demonstrate that the proposed TransCrowd achieves superior performance compared with all the weakly-supervised CNN-based counting methods and gains highly competitive counting performance compared with some popular fully-supervised counting methods." @default.
- W4225264236 created "2022-05-04" @default.
- W4225264236 creator A5012178361 @default.
- W4225264236 creator A5019452689 @default.
- W4225264236 creator A5033302204 @default.
- W4225264236 creator A5039363991 @default.
- W4225264236 creator A5080649483 @default.
- W4225264236 date "2022-04-26" @default.
- W4225264236 modified "2023-10-16" @default.
- W4225264236 title "TransCrowd: weakly-supervised crowd counting with transformers" @default.
- W4225264236 cites W1978232622 @default.
- W4225264236 cites W2072232009 @default.
- W4225264236 cites W2123175289 @default.
- W4225264236 cites W2153313055 @default.
- W4225264236 cites W2463631526 @default.
- W4225264236 cites W2514654788 @default.
- W4225264236 cites W2519354012 @default.
- W4225264236 cites W2798489385 @default.
- W4225264236 cites W2884960332 @default.
- W4225264236 cites W2886443245 @default.
- W4225264236 cites W2895051362 @default.
- W4225264236 cites W2914913933 @default.
- W4225264236 cites W2945574898 @default.
- W4225264236 cites W2961566087 @default.
- W4225264236 cites W2962720716 @default.
- W4225264236 cites W2962854645 @default.
- W4225264236 cites W2963035940 @default.
- W4225264236 cites W2963693541 @default.
- W4225264236 cites W2963838390 @default.
- W4225264236 cites W2963893037 @default.
- W4225264236 cites W2964203052 @default.
- W4225264236 cites W2964209782 @default.
- W4225264236 cites W2967069910 @default.
- W4225264236 cites W2967776630 @default.
- W4225264236 cites W2969620138 @default.
- W4225264236 cites W2981436300 @default.
- W4225264236 cites W2982007926 @default.
- W4225264236 cites W2982014038 @default.
- W4225264236 cites W2987761108 @default.
- W4225264236 cites W2987988567 @default.
- W4225264236 cites W3004672782 @default.
- W4225264236 cites W3010021361 @default.
- W4225264236 cites W3027606690 @default.
- W4225264236 cites W3034785991 @default.
- W4225264236 cites W3035193053 @default.
- W4225264236 cites W3035307763 @default.
- W4225264236 cites W3081099313 @default.
- W4225264236 cites W3084883754 @default.
- W4225264236 cites W3092787802 @default.
- W4225264236 cites W3096609285 @default.
- W4225264236 cites W3097407159 @default.
- W4225264236 cites W3106250896 @default.
- W4225264236 cites W3107554785 @default.
- W4225264236 cites W3112728669 @default.
- W4225264236 cites W3119214860 @default.
- W4225264236 cites W3167536469 @default.
- W4225264236 cites W3170841864 @default.
- W4225264236 cites W3171125843 @default.
- W4225264236 cites W3174519905 @default.
- W4225264236 cites W3175725565 @default.
- W4225264236 cites W3190723141 @default.
- W4225264236 cites W3214228243 @default.
- W4225264236 cites W4205890571 @default.
- W4225264236 cites W4226120942 @default.
- W4225264236 cites W4294310792 @default.
- W4225264236 doi "https://doi.org/10.1007/s11432-021-3445-y" @default.
- W4225264236 hasPublicationYear "2022" @default.
- W4225264236 type Work @default.
- W4225264236 citedByCount "49" @default.
- W4225264236 countsByYear W42252642362022 @default.
- W4225264236 countsByYear W42252642362023 @default.
- W4225264236 crossrefType "journal-article" @default.
- W4225264236 hasAuthorship W4225264236A5012178361 @default.
- W4225264236 hasAuthorship W4225264236A5019452689 @default.
- W4225264236 hasAuthorship W4225264236A5033302204 @default.
- W4225264236 hasAuthorship W4225264236A5039363991 @default.
- W4225264236 hasAuthorship W4225264236A5080649483 @default.
- W4225264236 hasBestOaLocation W42252642362 @default.
- W4225264236 hasConcept C105795698 @default.
- W4225264236 hasConcept C11413529 @default.
- W4225264236 hasConcept C119857082 @default.
- W4225264236 hasConcept C121332964 @default.
- W4225264236 hasConcept C153180895 @default.
- W4225264236 hasConcept C154945302 @default.
- W4225264236 hasConcept C165801399 @default.
- W4225264236 hasConcept C16592021 @default.
- W4225264236 hasConcept C2781104640 @default.
- W4225264236 hasConcept C33923547 @default.
- W4225264236 hasConcept C41008148 @default.
- W4225264236 hasConcept C62520636 @default.
- W4225264236 hasConcept C66322947 @default.
- W4225264236 hasConcept C81363708 @default.
- W4225264236 hasConceptScore W4225264236C105795698 @default.
- W4225264236 hasConceptScore W4225264236C11413529 @default.
- W4225264236 hasConceptScore W4225264236C119857082 @default.
- W4225264236 hasConceptScore W4225264236C121332964 @default.
- W4225264236 hasConceptScore W4225264236C153180895 @default.
- W4225264236 hasConceptScore W4225264236C154945302 @default.
- W4225264236 hasConceptScore W4225264236C165801399 @default.
- W4225264236 hasConceptScore W4225264236C16592021 @default.