Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225268839> ?p ?o ?g. }
- W4225268839 endingPage "3315" @default.
- W4225268839 startingPage "3315" @default.
- W4225268839 abstract "This paper presents a novel method for condition monitoring using the RMS residual of vibration signal reconstruction based on trained dictionaries through sparse representation theory. Measured signals were firstly decomposed into intrinsic mode functions (IMFs) for training the initial dictionary. In this step, an adaptive variational mode decomposition (VMD) was proposed for providing information with higher accuracy, and the decompositions were used as discriminative atoms for sparse representation. Then, the overcomplete dictionary for sparse coding was learned from IMFs to reserve the highlight feature of the signals. As the dictionaries were trained, newly measured signals could be directly reconstructed without any signal decompositions or dictionary learning. This meant errors likely introduced by signal process techniques, such as VMD, EMD, etc., could be excluded from the condition monitoring. Moreover, the efficiency of the fault diagnosis was greatly improved, as the reconstruction was fast, which showed a great potential in online diagnosis. The RMS of the residuals between the reconstructed and measured signals was extracted as a feature of condition. A case study on operating condition identification of a diesel engine was carried out experimentally based on vibration accelerations, which validated the availability of the proposed feature extraction and condition-monitoring approach. The presented results showed that the proposed method resulted in a great improvement in the fault feature extraction and condition monitoring, and is a promising approach for future research." @default.
- W4225268839 created "2022-05-04" @default.
- W4225268839 creator A5029029467 @default.
- W4225268839 creator A5037788536 @default.
- W4225268839 creator A5049221768 @default.
- W4225268839 creator A5068172512 @default.
- W4225268839 creator A5075171443 @default.
- W4225268839 date "2022-05-02" @default.
- W4225268839 modified "2023-10-18" @default.
- W4225268839 title "A Condition-Monitoring Approach for Diesel Engines Based on an Adaptive VMD and Sparse Representation Theory" @default.
- W4225268839 cites W1694307164 @default.
- W4225268839 cites W1964511482 @default.
- W4225268839 cites W1976709621 @default.
- W4225268839 cites W2000982976 @default.
- W4225268839 cites W2007221293 @default.
- W4225268839 cites W2032515339 @default.
- W4225268839 cites W2046658845 @default.
- W4225268839 cites W2056700360 @default.
- W4225268839 cites W2061438946 @default.
- W4225268839 cites W2084197604 @default.
- W4225268839 cites W2099641086 @default.
- W4225268839 cites W2160097539 @default.
- W4225268839 cites W2160547390 @default.
- W4225268839 cites W2163398148 @default.
- W4225268839 cites W2178200545 @default.
- W4225268839 cites W2283544056 @default.
- W4225268839 cites W2524716595 @default.
- W4225268839 cites W2589138705 @default.
- W4225268839 cites W2619144960 @default.
- W4225268839 cites W2735099784 @default.
- W4225268839 cites W2744242411 @default.
- W4225268839 cites W2776958316 @default.
- W4225268839 cites W2781003581 @default.
- W4225268839 cites W2791125525 @default.
- W4225268839 cites W2804188964 @default.
- W4225268839 cites W2807657100 @default.
- W4225268839 cites W2809767579 @default.
- W4225268839 cites W2885785531 @default.
- W4225268839 cites W2911297487 @default.
- W4225268839 cites W2911827809 @default.
- W4225268839 cites W2923892494 @default.
- W4225268839 cites W2931819295 @default.
- W4225268839 cites W2985148234 @default.
- W4225268839 cites W2986488475 @default.
- W4225268839 cites W3009613663 @default.
- W4225268839 cites W3042153352 @default.
- W4225268839 cites W3130760054 @default.
- W4225268839 cites W3135601218 @default.
- W4225268839 cites W3180993110 @default.
- W4225268839 cites W3184703656 @default.
- W4225268839 cites W4210747311 @default.
- W4225268839 doi "https://doi.org/10.3390/en15093315" @default.
- W4225268839 hasPublicationYear "2022" @default.
- W4225268839 type Work @default.
- W4225268839 citedByCount "0" @default.
- W4225268839 crossrefType "journal-article" @default.
- W4225268839 hasAuthorship W4225268839A5029029467 @default.
- W4225268839 hasAuthorship W4225268839A5037788536 @default.
- W4225268839 hasAuthorship W4225268839A5049221768 @default.
- W4225268839 hasAuthorship W4225268839A5068172512 @default.
- W4225268839 hasAuthorship W4225268839A5075171443 @default.
- W4225268839 hasBestOaLocation W42252688391 @default.
- W4225268839 hasConcept C11413529 @default.
- W4225268839 hasConcept C119599485 @default.
- W4225268839 hasConcept C124066611 @default.
- W4225268839 hasConcept C127313418 @default.
- W4225268839 hasConcept C127413603 @default.
- W4225268839 hasConcept C138885662 @default.
- W4225268839 hasConcept C153180895 @default.
- W4225268839 hasConcept C154771677 @default.
- W4225268839 hasConcept C154945302 @default.
- W4225268839 hasConcept C155512373 @default.
- W4225268839 hasConcept C165205528 @default.
- W4225268839 hasConcept C175551986 @default.
- W4225268839 hasConcept C17744445 @default.
- W4225268839 hasConcept C199360897 @default.
- W4225268839 hasConcept C199539241 @default.
- W4225268839 hasConcept C2775846686 @default.
- W4225268839 hasConcept C2776359362 @default.
- W4225268839 hasConcept C2776401178 @default.
- W4225268839 hasConcept C2779843651 @default.
- W4225268839 hasConcept C41008148 @default.
- W4225268839 hasConcept C41895202 @default.
- W4225268839 hasConcept C52622490 @default.
- W4225268839 hasConcept C77637269 @default.
- W4225268839 hasConcept C94625758 @default.
- W4225268839 hasConcept C97931131 @default.
- W4225268839 hasConceptScore W4225268839C11413529 @default.
- W4225268839 hasConceptScore W4225268839C119599485 @default.
- W4225268839 hasConceptScore W4225268839C124066611 @default.
- W4225268839 hasConceptScore W4225268839C127313418 @default.
- W4225268839 hasConceptScore W4225268839C127413603 @default.
- W4225268839 hasConceptScore W4225268839C138885662 @default.
- W4225268839 hasConceptScore W4225268839C153180895 @default.
- W4225268839 hasConceptScore W4225268839C154771677 @default.
- W4225268839 hasConceptScore W4225268839C154945302 @default.
- W4225268839 hasConceptScore W4225268839C155512373 @default.
- W4225268839 hasConceptScore W4225268839C165205528 @default.