Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225281569> ?p ?o ?g. }
- W4225281569 endingPage "115813" @default.
- W4225281569 startingPage "115813" @default.
- W4225281569 abstract "Singularity of the gauge condition n⋅∂n⋅A=0 at n⋅k=0 is studied here. Such singularity is different from that in axial gauge and can not be regularized through analytical continuation method. It is proved that construction of continuous and well defined gauge links is obstructed by the Gribov ambiguity. Thus continuous gauge conditions which are free from the Gribov ambiguity are essential in studies on nonlocal gauge invariant objects. The Faddeev-Popov determinant of the gauge n⋅∂n⋅A=0, which is solved explicitly here, behaves like a δ-functional of gauge potentials once singularities in the functional integral is neglected and the length of the space along nμ direction tends to infinity. As a sequence, perturbation series in the gauge n⋅∂n⋅A=0 are equivalent to those in axial gauge for objects which are free from these singularities. However, the equivalence between the gauge n⋅∂n⋅A=0 and axial gauge is nontrivial for objects suffering from these singularities. It is also demonstrated through explicit calculations that the equivalence for long distance objects is not the case in general, especially lattice calculations show significant distinctions among the axial gauge n⋅A=0, the Landau gauge ∂⋅A=0 and the gauge n⋅∂n⋅A=0 for long distance objects." @default.
- W4225281569 created "2022-05-04" @default.
- W4225281569 creator A5006651636 @default.
- W4225281569 creator A5080827449 @default.
- W4225281569 creator A5083900028 @default.
- W4225281569 date "2022-07-01" @default.
- W4225281569 modified "2023-09-30" @default.
- W4225281569 title "Equivalence between the gauge n ⋅ ∂n ⋅ A = 0 and the axial gauge" @default.
- W4225281569 cites W1505777436 @default.
- W4225281569 cites W1514487823 @default.
- W4225281569 cites W1883339380 @default.
- W4225281569 cites W1975602746 @default.
- W4225281569 cites W1992488173 @default.
- W4225281569 cites W1997724630 @default.
- W4225281569 cites W2010159301 @default.
- W4225281569 cites W2014437371 @default.
- W4225281569 cites W2022865481 @default.
- W4225281569 cites W2026169595 @default.
- W4225281569 cites W2035940613 @default.
- W4225281569 cites W2043843494 @default.
- W4225281569 cites W2049308617 @default.
- W4225281569 cites W2049779810 @default.
- W4225281569 cites W2051679624 @default.
- W4225281569 cites W2058699890 @default.
- W4225281569 cites W2059521671 @default.
- W4225281569 cites W2059587082 @default.
- W4225281569 cites W2073560750 @default.
- W4225281569 cites W2074904689 @default.
- W4225281569 cites W2076802786 @default.
- W4225281569 cites W2078549845 @default.
- W4225281569 cites W2080678955 @default.
- W4225281569 cites W2081042626 @default.
- W4225281569 cites W2089193759 @default.
- W4225281569 cites W2092174702 @default.
- W4225281569 cites W2093024861 @default.
- W4225281569 cites W2116792163 @default.
- W4225281569 cites W2128344786 @default.
- W4225281569 cites W2155971596 @default.
- W4225281569 cites W2167789392 @default.
- W4225281569 cites W2172949211 @default.
- W4225281569 cites W2175459808 @default.
- W4225281569 cites W2219745954 @default.
- W4225281569 cites W2241233520 @default.
- W4225281569 cites W2245169276 @default.
- W4225281569 cites W2476108813 @default.
- W4225281569 cites W2536937491 @default.
- W4225281569 cites W2576378019 @default.
- W4225281569 cites W2783928347 @default.
- W4225281569 cites W2794679315 @default.
- W4225281569 cites W2905250627 @default.
- W4225281569 cites W3102527405 @default.
- W4225281569 cites W3102785295 @default.
- W4225281569 cites W3106087670 @default.
- W4225281569 doi "https://doi.org/10.1016/j.nuclphysb.2022.115813" @default.
- W4225281569 hasPublicationYear "2022" @default.
- W4225281569 type Work @default.
- W4225281569 citedByCount "0" @default.
- W4225281569 crossrefType "journal-article" @default.
- W4225281569 hasAuthorship W4225281569A5006651636 @default.
- W4225281569 hasAuthorship W4225281569A5080827449 @default.
- W4225281569 hasAuthorship W4225281569A5083900028 @default.
- W4225281569 hasBestOaLocation W42252815691 @default.
- W4225281569 hasConcept C119766781 @default.
- W4225281569 hasConcept C121332964 @default.
- W4225281569 hasConcept C12843 @default.
- W4225281569 hasConcept C134306372 @default.
- W4225281569 hasConcept C138817895 @default.
- W4225281569 hasConcept C16171025 @default.
- W4225281569 hasConcept C166957645 @default.
- W4225281569 hasConcept C181830111 @default.
- W4225281569 hasConcept C200161520 @default.
- W4225281569 hasConcept C27428435 @default.
- W4225281569 hasConcept C31593994 @default.
- W4225281569 hasConcept C33923547 @default.
- W4225281569 hasConcept C37914503 @default.
- W4225281569 hasConcept C39366733 @default.
- W4225281569 hasConcept C40263606 @default.
- W4225281569 hasConcept C40976572 @default.
- W4225281569 hasConcept C62520636 @default.
- W4225281569 hasConcept C65211518 @default.
- W4225281569 hasConcept C65266758 @default.
- W4225281569 hasConcept C95457728 @default.
- W4225281569 hasConceptScore W4225281569C119766781 @default.
- W4225281569 hasConceptScore W4225281569C121332964 @default.
- W4225281569 hasConceptScore W4225281569C12843 @default.
- W4225281569 hasConceptScore W4225281569C134306372 @default.
- W4225281569 hasConceptScore W4225281569C138817895 @default.
- W4225281569 hasConceptScore W4225281569C16171025 @default.
- W4225281569 hasConceptScore W4225281569C166957645 @default.
- W4225281569 hasConceptScore W4225281569C181830111 @default.
- W4225281569 hasConceptScore W4225281569C200161520 @default.
- W4225281569 hasConceptScore W4225281569C27428435 @default.
- W4225281569 hasConceptScore W4225281569C31593994 @default.
- W4225281569 hasConceptScore W4225281569C33923547 @default.
- W4225281569 hasConceptScore W4225281569C37914503 @default.
- W4225281569 hasConceptScore W4225281569C39366733 @default.
- W4225281569 hasConceptScore W4225281569C40263606 @default.
- W4225281569 hasConceptScore W4225281569C40976572 @default.