Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225291590> ?p ?o ?g. }
- W4225291590 endingPage "1195" @default.
- W4225291590 startingPage "1179" @default.
- W4225291590 abstract "This study aims to investigate the role of artificial intelligence (AI) driven facial recognition to enhance a value proposition by influencing different areas of services in the travel and tourism industry. We adopted semi-structured interviews to derive insights from 26 respondents. Thematic analysis reveals the development of four main themes (personalization, data-driven service offering, security and safety, and seamless payments). Further, we mapped the impact of AI- driven facial recognition to enhance value and experience for corporate guests. Findings indicate that AI-based facial recognition can facilitate the travel and tourism industry in understanding travelers' needs, optimization of service offers, and value-based services, whereas data-driven services can be realized in the form of customized trip planning, email, and calendar integration, and quick bill summarization. This contributes to strengthening the tourism literature through the lens of organizational information processing theory." @default.
- W4225291590 created "2022-05-05" @default.
- W4225291590 creator A5005452016 @default.
- W4225291590 creator A5023290544 @default.
- W4225291590 creator A5050176135 @default.
- W4225291590 creator A5058967946 @default.
- W4225291590 date "2022-04-30" @default.
- W4225291590 modified "2023-10-18" @default.
- W4225291590 title "The future is yesterday: Use of AI-driven facial recognition to enhance value in the travel and tourism industry" @default.
- W4225291590 cites W1560493355 @default.
- W4225291590 cites W1881049122 @default.
- W4225291590 cites W1921934148 @default.
- W4225291590 cites W1966180099 @default.
- W4225291590 cites W1977107222 @default.
- W4225291590 cites W1982066250 @default.
- W4225291590 cites W1983504728 @default.
- W4225291590 cites W1990222692 @default.
- W4225291590 cites W1990633146 @default.
- W4225291590 cites W2001718223 @default.
- W4225291590 cites W2017497552 @default.
- W4225291590 cites W2053432263 @default.
- W4225291590 cites W2053529851 @default.
- W4225291590 cites W2063636573 @default.
- W4225291590 cites W2100767128 @default.
- W4225291590 cites W2101756144 @default.
- W4225291590 cites W2111194702 @default.
- W4225291590 cites W2114738292 @default.
- W4225291590 cites W2119248211 @default.
- W4225291590 cites W2146751091 @default.
- W4225291590 cites W2147490991 @default.
- W4225291590 cites W2156118686 @default.
- W4225291590 cites W2294172096 @default.
- W4225291590 cites W2341614611 @default.
- W4225291590 cites W2404125806 @default.
- W4225291590 cites W2412291140 @default.
- W4225291590 cites W2465368374 @default.
- W4225291590 cites W2562703534 @default.
- W4225291590 cites W2579470351 @default.
- W4225291590 cites W2585123518 @default.
- W4225291590 cites W2650941562 @default.
- W4225291590 cites W2732789950 @default.
- W4225291590 cites W2736350530 @default.
- W4225291590 cites W2774147932 @default.
- W4225291590 cites W2779605650 @default.
- W4225291590 cites W2782847759 @default.
- W4225291590 cites W2793118916 @default.
- W4225291590 cites W2796850818 @default.
- W4225291590 cites W2810303200 @default.
- W4225291590 cites W2887909412 @default.
- W4225291590 cites W2896290558 @default.
- W4225291590 cites W2897795150 @default.
- W4225291590 cites W2899856450 @default.
- W4225291590 cites W2901181835 @default.
- W4225291590 cites W2911274964 @default.
- W4225291590 cites W2913916101 @default.
- W4225291590 cites W2923469844 @default.
- W4225291590 cites W2924639054 @default.
- W4225291590 cites W2934302500 @default.
- W4225291590 cites W2937572465 @default.
- W4225291590 cites W2942942407 @default.
- W4225291590 cites W2955402083 @default.
- W4225291590 cites W2956382671 @default.
- W4225291590 cites W2964499016 @default.
- W4225291590 cites W2969625533 @default.
- W4225291590 cites W2983326360 @default.
- W4225291590 cites W2985936223 @default.
- W4225291590 cites W2998300106 @default.
- W4225291590 cites W3000328516 @default.
- W4225291590 cites W3011770054 @default.
- W4225291590 cites W3011928896 @default.
- W4225291590 cites W3014818300 @default.
- W4225291590 cites W3015448909 @default.
- W4225291590 cites W3018597304 @default.
- W4225291590 cites W3029601627 @default.
- W4225291590 cites W3046114243 @default.
- W4225291590 cites W3092021852 @default.
- W4225291590 cites W3092389835 @default.
- W4225291590 cites W3120188930 @default.
- W4225291590 cites W3156127241 @default.
- W4225291590 cites W3178738300 @default.
- W4225291590 cites W3186337419 @default.
- W4225291590 cites W3190912022 @default.
- W4225291590 cites W3191215849 @default.
- W4225291590 cites W3191737511 @default.
- W4225291590 cites W3191907342 @default.
- W4225291590 cites W3193351859 @default.
- W4225291590 cites W3194522055 @default.
- W4225291590 cites W3195625625 @default.
- W4225291590 cites W3205114486 @default.
- W4225291590 cites W3211574606 @default.
- W4225291590 cites W855790478 @default.
- W4225291590 doi "https://doi.org/10.1007/s10796-022-10271-8" @default.
- W4225291590 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35529102" @default.
- W4225291590 hasPublicationYear "2022" @default.
- W4225291590 type Work @default.
- W4225291590 citedByCount "3" @default.
- W4225291590 countsByYear W42252915902023 @default.
- W4225291590 crossrefType "journal-article" @default.