Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225293621> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4225293621 abstract "Topology impacts important network performance metrics, including link utilization, throughput and latency, and is of central importance to network operators. However, due to the combinatorial nature of network topology, it is extremely difficult to obtain an optimal solution, especially since topology planning in networks also often comes with management-specific constraints. As a result, local optimization with hand-tuned heuristic methods from human experts are often adopted in practice. Yet, heuristic methods cannot cover the global topology design space while taking into account constraints, and cannot guarantee to find good solutions. In this paper, we propose a novel deep reinforcement learning (DRL) algorithm, called Advantage Actor Critic-Graph Searching (A2C-GS), for network topology optimization. A2C-GS consists of three novel components, including a verifier to validate the correctness of a generated network topology, a graph neural network (GNN) to efficiently approximate topology rating, and a DRL actor layer to conduct a topology search. A2C-GS can efficiently search over large topology space and output topology with satisfying performance. We conduct a case study based on a real network scenario, and our experimental results demonstrate the superior performance of A2C-GS in terms of both efficiency and performance." @default.
- W4225293621 created "2022-05-05" @default.
- W4225293621 creator A5029851581 @default.
- W4225293621 creator A5030102825 @default.
- W4225293621 creator A5032061966 @default.
- W4225293621 creator A5034776912 @default.
- W4225293621 creator A5043758010 @default.
- W4225293621 creator A5063197689 @default.
- W4225293621 creator A5077781605 @default.
- W4225293621 creator A5082905458 @default.
- W4225293621 date "2022-04-19" @default.
- W4225293621 modified "2023-09-24" @default.
- W4225293621 title "Network Topology Optimization via Deep Reinforcement Learning" @default.
- W4225293621 doi "https://doi.org/10.48550/arxiv.2204.14133" @default.
- W4225293621 hasPublicationYear "2022" @default.
- W4225293621 type Work @default.
- W4225293621 citedByCount "0" @default.
- W4225293621 crossrefType "posted-content" @default.
- W4225293621 hasAuthorship W4225293621A5029851581 @default.
- W4225293621 hasAuthorship W4225293621A5030102825 @default.
- W4225293621 hasAuthorship W4225293621A5032061966 @default.
- W4225293621 hasAuthorship W4225293621A5034776912 @default.
- W4225293621 hasAuthorship W4225293621A5043758010 @default.
- W4225293621 hasAuthorship W4225293621A5063197689 @default.
- W4225293621 hasAuthorship W4225293621A5077781605 @default.
- W4225293621 hasAuthorship W4225293621A5082905458 @default.
- W4225293621 hasBestOaLocation W42252936211 @default.
- W4225293621 hasConcept C11413529 @default.
- W4225293621 hasConcept C114614502 @default.
- W4225293621 hasConcept C117729477 @default.
- W4225293621 hasConcept C118615104 @default.
- W4225293621 hasConcept C127413603 @default.
- W4225293621 hasConcept C129089157 @default.
- W4225293621 hasConcept C132525143 @default.
- W4225293621 hasConcept C135628077 @default.
- W4225293621 hasConcept C143913944 @default.
- W4225293621 hasConcept C154945302 @default.
- W4225293621 hasConcept C173801870 @default.
- W4225293621 hasConcept C184720557 @default.
- W4225293621 hasConcept C189216461 @default.
- W4225293621 hasConcept C199845137 @default.
- W4225293621 hasConcept C31258907 @default.
- W4225293621 hasConcept C33923547 @default.
- W4225293621 hasConcept C41008148 @default.
- W4225293621 hasConcept C55439883 @default.
- W4225293621 hasConcept C66938386 @default.
- W4225293621 hasConcept C80444323 @default.
- W4225293621 hasConcept C81332173 @default.
- W4225293621 hasConcept C97541855 @default.
- W4225293621 hasConceptScore W4225293621C11413529 @default.
- W4225293621 hasConceptScore W4225293621C114614502 @default.
- W4225293621 hasConceptScore W4225293621C117729477 @default.
- W4225293621 hasConceptScore W4225293621C118615104 @default.
- W4225293621 hasConceptScore W4225293621C127413603 @default.
- W4225293621 hasConceptScore W4225293621C129089157 @default.
- W4225293621 hasConceptScore W4225293621C132525143 @default.
- W4225293621 hasConceptScore W4225293621C135628077 @default.
- W4225293621 hasConceptScore W4225293621C143913944 @default.
- W4225293621 hasConceptScore W4225293621C154945302 @default.
- W4225293621 hasConceptScore W4225293621C173801870 @default.
- W4225293621 hasConceptScore W4225293621C184720557 @default.
- W4225293621 hasConceptScore W4225293621C189216461 @default.
- W4225293621 hasConceptScore W4225293621C199845137 @default.
- W4225293621 hasConceptScore W4225293621C31258907 @default.
- W4225293621 hasConceptScore W4225293621C33923547 @default.
- W4225293621 hasConceptScore W4225293621C41008148 @default.
- W4225293621 hasConceptScore W4225293621C55439883 @default.
- W4225293621 hasConceptScore W4225293621C66938386 @default.
- W4225293621 hasConceptScore W4225293621C80444323 @default.
- W4225293621 hasConceptScore W4225293621C81332173 @default.
- W4225293621 hasConceptScore W4225293621C97541855 @default.
- W4225293621 hasLocation W42252936211 @default.
- W4225293621 hasOpenAccess W4225293621 @default.
- W4225293621 hasPrimaryLocation W42252936211 @default.
- W4225293621 hasRelatedWork W1543502047 @default.
- W4225293621 hasRelatedWork W2000651966 @default.
- W4225293621 hasRelatedWork W2102909472 @default.
- W4225293621 hasRelatedWork W2108376113 @default.
- W4225293621 hasRelatedWork W2161423631 @default.
- W4225293621 hasRelatedWork W2181626506 @default.
- W4225293621 hasRelatedWork W2541174657 @default.
- W4225293621 hasRelatedWork W2562587073 @default.
- W4225293621 hasRelatedWork W2978435669 @default.
- W4225293621 hasRelatedWork W4224273241 @default.
- W4225293621 isParatext "false" @default.
- W4225293621 isRetracted "false" @default.
- W4225293621 workType "article" @default.