Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225296543> ?p ?o ?g. }
- W4225296543 endingPage "106049" @default.
- W4225296543 startingPage "106049" @default.
- W4225296543 abstract "This paper develops an open-high-low-close (OHLC) data forecasting framework to forecast EUA futures price based on EU ETS data and extended exogenous variables from 2013 to 2020. The challenge of forecasting such an OHLC structure lies in handling its three intrinsic constraints, i.e., the positive constraint, interval constraint, and boundary constraint. This paper proposes a novel unconstrained transformation method for OHLC data and combines it with various forecasting models. Out-of-sample modelings identify the extraordinary performance of the convolutional neural network (CNN) in terms of MAPE (1.371%), MAE (0.274), RMSE (0.370), and AR (0.621), better than that of multiple linear regression (MLR), vector auto-regression (VAR) and vector error correction model (VECM), support vector regression (SVR), and multi-layer perceptron (MLP). The proposed transformation-based forecasting framework demonstrates the considerable potential for OHLC data forecasting in the energy finance field, e.g., crude and natural gas. Practicable and concrete suggestions are provided to ensure the profitability of trading EUA futures." @default.
- W4225296543 created "2022-05-05" @default.
- W4225296543 creator A5044945190 @default.
- W4225296543 creator A5055895250 @default.
- W4225296543 creator A5057451811 @default.
- W4225296543 creator A5064783237 @default.
- W4225296543 creator A5069331520 @default.
- W4225296543 date "2022-06-01" @default.
- W4225296543 modified "2023-10-15" @default.
- W4225296543 title "Convolutional neural network forecasting of European Union allowances futures using a novel unconstrained transformation method" @default.
- W4225296543 cites W1519585147 @default.
- W4225296543 cites W1726451575 @default.
- W4225296543 cites W1969091622 @default.
- W4225296543 cites W1970694313 @default.
- W4225296543 cites W1987238956 @default.
- W4225296543 cites W2000525652 @default.
- W4225296543 cites W2000774474 @default.
- W4225296543 cites W2002393636 @default.
- W4225296543 cites W2003787415 @default.
- W4225296543 cites W2010541215 @default.
- W4225296543 cites W2012822803 @default.
- W4225296543 cites W2015964417 @default.
- W4225296543 cites W2019459021 @default.
- W4225296543 cites W2022109533 @default.
- W4225296543 cites W2022897712 @default.
- W4225296543 cites W2035737123 @default.
- W4225296543 cites W2036017779 @default.
- W4225296543 cites W2037307619 @default.
- W4225296543 cites W2048583718 @default.
- W4225296543 cites W2058078399 @default.
- W4225296543 cites W2060330798 @default.
- W4225296543 cites W2063150451 @default.
- W4225296543 cites W2071810998 @default.
- W4225296543 cites W2071825902 @default.
- W4225296543 cites W2073344015 @default.
- W4225296543 cites W2086242486 @default.
- W4225296543 cites W2086848330 @default.
- W4225296543 cites W2089856083 @default.
- W4225296543 cites W2091391445 @default.
- W4225296543 cites W2094633847 @default.
- W4225296543 cites W2097736597 @default.
- W4225296543 cites W2097850530 @default.
- W4225296543 cites W2112066132 @default.
- W4225296543 cites W2130093701 @default.
- W4225296543 cites W2140913038 @default.
- W4225296543 cites W2153562738 @default.
- W4225296543 cites W2154506590 @default.
- W4225296543 cites W2155187653 @default.
- W4225296543 cites W2170917304 @default.
- W4225296543 cites W2250153062 @default.
- W4225296543 cites W2265008683 @default.
- W4225296543 cites W2288054910 @default.
- W4225296543 cites W2470462123 @default.
- W4225296543 cites W2511042364 @default.
- W4225296543 cites W2571353333 @default.
- W4225296543 cites W2586354609 @default.
- W4225296543 cites W2781854549 @default.
- W4225296543 cites W2790460293 @default.
- W4225296543 cites W2795119553 @default.
- W4225296543 cites W2884367402 @default.
- W4225296543 cites W2912036663 @default.
- W4225296543 cites W2921085109 @default.
- W4225296543 cites W2921748836 @default.
- W4225296543 cites W2922995703 @default.
- W4225296543 cites W2989940830 @default.
- W4225296543 cites W2992579954 @default.
- W4225296543 cites W3008515144 @default.
- W4225296543 cites W3014509841 @default.
- W4225296543 cites W3023491164 @default.
- W4225296543 cites W3046354432 @default.
- W4225296543 cites W3093411379 @default.
- W4225296543 cites W3123780550 @default.
- W4225296543 cites W3124142770 @default.
- W4225296543 cites W3124890924 @default.
- W4225296543 cites W3125347602 @default.
- W4225296543 cites W3125429581 @default.
- W4225296543 cites W3125777643 @default.
- W4225296543 cites W3161127832 @default.
- W4225296543 cites W3201434373 @default.
- W4225296543 cites W4239510810 @default.
- W4225296543 doi "https://doi.org/10.1016/j.eneco.2022.106049" @default.
- W4225296543 hasPublicationYear "2022" @default.
- W4225296543 type Work @default.
- W4225296543 citedByCount "16" @default.
- W4225296543 countsByYear W42252965432022 @default.
- W4225296543 countsByYear W42252965432023 @default.
- W4225296543 crossrefType "journal-article" @default.
- W4225296543 hasAuthorship W4225296543A5044945190 @default.
- W4225296543 hasAuthorship W4225296543A5055895250 @default.
- W4225296543 hasAuthorship W4225296543A5057451811 @default.
- W4225296543 hasAuthorship W4225296543A5064783237 @default.
- W4225296543 hasAuthorship W4225296543A5069331520 @default.
- W4225296543 hasConcept C10138342 @default.
- W4225296543 hasConcept C104317684 @default.
- W4225296543 hasConcept C105795698 @default.
- W4225296543 hasConcept C106306483 @default.
- W4225296543 hasConcept C12267149 @default.
- W4225296543 hasConcept C124101348 @default.