Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225297966> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4225297966 abstract "As data becomes more prevalent in our societies, the need for large-scale data analysis is expanding at an exponential rate. The advantage of having a plethora of data is that it allows the decision-maker to adopt complicated models in settings that were previously too expensive. A method based on distributed learning is also required because of the sheer volume of data. As a result, Deep Learning models demand a significant amount of resources, and distributed training is required. A technique to distributed learning based on many criteria is presented in this research. An ensemble of decision rules that maximize aprioristically stated performance measures is built using the Weighted Goal Programming technique in its Chebyshev formulation, which is a variation of the Weighted Goal Programming approach. Such a formulation is advantageous since it is model and metric agnostic and produces an output that is easy to understand for the decision-maker to comprehend. We put our technique to the test by demonstrating a real application in the field of power demand forecasting. In our experiments, we found that when we allow for overlap between dataset splits, the performance of our methods is consistently better than the baseline model trained on the entire dataset." @default.
- W4225297966 created "2022-05-05" @default.
- W4225297966 creator A5008833108 @default.
- W4225297966 creator A5064798552 @default.
- W4225297966 creator A5065397422 @default.
- W4225297966 date "2022-03-23" @default.
- W4225297966 modified "2023-09-26" @default.
- W4225297966 title "Goal Programming in Federated Learning: an Application to Time Series Forecasting" @default.
- W4225297966 cites W2046862415 @default.
- W4225297966 cites W2076744101 @default.
- W4225297966 cites W2079828365 @default.
- W4225297966 cites W2083022762 @default.
- W4225297966 cites W2152358062 @default.
- W4225297966 cites W2154339093 @default.
- W4225297966 cites W2894999754 @default.
- W4225297966 cites W2900637357 @default.
- W4225297966 cites W2924971168 @default.
- W4225297966 cites W3033381105 @default.
- W4225297966 cites W3136347151 @default.
- W4225297966 cites W3164573547 @default.
- W4225297966 cites W3177199789 @default.
- W4225297966 cites W3202003630 @default.
- W4225297966 doi "https://doi.org/10.1109/dasa54658.2022.9765040" @default.
- W4225297966 hasPublicationYear "2022" @default.
- W4225297966 type Work @default.
- W4225297966 citedByCount "2" @default.
- W4225297966 countsByYear W42252979662022 @default.
- W4225297966 crossrefType "proceedings-article" @default.
- W4225297966 hasAuthorship W4225297966A5008833108 @default.
- W4225297966 hasAuthorship W4225297966A5064798552 @default.
- W4225297966 hasAuthorship W4225297966A5065397422 @default.
- W4225297966 hasConcept C111368507 @default.
- W4225297966 hasConcept C119857082 @default.
- W4225297966 hasConcept C124101348 @default.
- W4225297966 hasConcept C12725497 @default.
- W4225297966 hasConcept C127313418 @default.
- W4225297966 hasConcept C127413603 @default.
- W4225297966 hasConcept C151406439 @default.
- W4225297966 hasConcept C154945302 @default.
- W4225297966 hasConcept C176217482 @default.
- W4225297966 hasConcept C202444582 @default.
- W4225297966 hasConcept C21547014 @default.
- W4225297966 hasConcept C2986080485 @default.
- W4225297966 hasConcept C33923547 @default.
- W4225297966 hasConcept C41008148 @default.
- W4225297966 hasConcept C42475967 @default.
- W4225297966 hasConcept C9652623 @default.
- W4225297966 hasConceptScore W4225297966C111368507 @default.
- W4225297966 hasConceptScore W4225297966C119857082 @default.
- W4225297966 hasConceptScore W4225297966C124101348 @default.
- W4225297966 hasConceptScore W4225297966C12725497 @default.
- W4225297966 hasConceptScore W4225297966C127313418 @default.
- W4225297966 hasConceptScore W4225297966C127413603 @default.
- W4225297966 hasConceptScore W4225297966C151406439 @default.
- W4225297966 hasConceptScore W4225297966C154945302 @default.
- W4225297966 hasConceptScore W4225297966C176217482 @default.
- W4225297966 hasConceptScore W4225297966C202444582 @default.
- W4225297966 hasConceptScore W4225297966C21547014 @default.
- W4225297966 hasConceptScore W4225297966C2986080485 @default.
- W4225297966 hasConceptScore W4225297966C33923547 @default.
- W4225297966 hasConceptScore W4225297966C41008148 @default.
- W4225297966 hasConceptScore W4225297966C42475967 @default.
- W4225297966 hasConceptScore W4225297966C9652623 @default.
- W4225297966 hasLocation W42252979661 @default.
- W4225297966 hasOpenAccess W4225297966 @default.
- W4225297966 hasPrimaryLocation W42252979661 @default.
- W4225297966 hasRelatedWork W2065460148 @default.
- W4225297966 hasRelatedWork W2611285220 @default.
- W4225297966 hasRelatedWork W3097598587 @default.
- W4225297966 hasRelatedWork W3199933253 @default.
- W4225297966 hasRelatedWork W4206202795 @default.
- W4225297966 hasRelatedWork W4213225422 @default.
- W4225297966 hasRelatedWork W4288754364 @default.
- W4225297966 hasRelatedWork W4308734192 @default.
- W4225297966 hasRelatedWork W4309045103 @default.
- W4225297966 hasRelatedWork W4312831135 @default.
- W4225297966 isParatext "false" @default.
- W4225297966 isRetracted "false" @default.
- W4225297966 workType "article" @default.