Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225303670> ?p ?o ?g. }
- W4225303670 abstract "The healthcare field has long been promised a number of exciting and powerful applications of Artificial Intelligence (AI) to improve the quality and delivery of health care services. AI techniques, such as machine learning (ML), have proven the ability to model enormous amounts of complex data and biological phenomena in ways only imaginable with human abilities alone. As such, medical professionals, data scientists, and Big Tech companies alike have all invested substantial time, effort, and funding into these technologies with hopes that AI systems will provide rigorous and systematic interpretations of large amounts of data that can be leveraged to augment clinical judgments in real time. However, despite not being newly introduced, AI-based medical devices have more than often been limited in their true clinical impact that was originally promised or that which is likely capable, such as during the current COVID-19 pandemic. There are several common pitfalls for these technologies that if not prospectively managed or adjusted in real-time, will continue to hinder their performance in high stakes environments outside of the lab in which they were created. To address these concerns, we outline and discuss many of the problems that future developers will likely face that contribute to these failures. Specifically, we examine the field under four lenses: approach, data, method and operation. If we continue to prospectively address and manage these concerns with reliable solutions and appropriate system processes in place, then we as a field may further optimize the clinical applicability and adoption of medical based AI technology moving forward." @default.
- W4225303670 created "2022-05-05" @default.
- W4225303670 creator A5007833845 @default.
- W4225303670 creator A5032766037 @default.
- W4225303670 date "2022-05-03" @default.
- W4225303670 modified "2023-09-26" @default.
- W4225303670 title "12 Plagues of AI in Healthcare: A Practical Guide to Current Issues With Using Machine Learning in a Medical Context" @default.
- W4225303670 cites W122802539 @default.
- W4225303670 cites W1505191356 @default.
- W4225303670 cites W1827055355 @default.
- W4225303670 cites W1904826605 @default.
- W4225303670 cites W2004876109 @default.
- W4225303670 cites W2014793675 @default.
- W4225303670 cites W2033865693 @default.
- W4225303670 cites W2098328700 @default.
- W4225303670 cites W2106671991 @default.
- W4225303670 cites W2131222241 @default.
- W4225303670 cites W2165827672 @default.
- W4225303670 cites W2219140802 @default.
- W4225303670 cites W2499800833 @default.
- W4225303670 cites W2571093196 @default.
- W4225303670 cites W2786147899 @default.
- W4225303670 cites W2789958560 @default.
- W4225303670 cites W2789970635 @default.
- W4225303670 cites W2791924245 @default.
- W4225303670 cites W2885688423 @default.
- W4225303670 cites W2886283492 @default.
- W4225303670 cites W2888437034 @default.
- W4225303670 cites W2890354882 @default.
- W4225303670 cites W2893939673 @default.
- W4225303670 cites W2897471074 @default.
- W4225303670 cites W2915829734 @default.
- W4225303670 cites W2919841582 @default.
- W4225303670 cites W2924551358 @default.
- W4225303670 cites W2936924363 @default.
- W4225303670 cites W2937186836 @default.
- W4225303670 cites W2939466230 @default.
- W4225303670 cites W2953019491 @default.
- W4225303670 cites W2990283237 @default.
- W4225303670 cites W3013520104 @default.
- W4225303670 cites W3014524604 @default.
- W4225303670 cites W3015186576 @default.
- W4225303670 cites W3025729836 @default.
- W4225303670 cites W3036458852 @default.
- W4225303670 cites W3041732149 @default.
- W4225303670 cites W3093280446 @default.
- W4225303670 cites W3098949126 @default.
- W4225303670 cites W3105070630 @default.
- W4225303670 cites W3109097928 @default.
- W4225303670 cites W3116286104 @default.
- W4225303670 cites W3120664440 @default.
- W4225303670 cites W3121000782 @default.
- W4225303670 cites W3124682529 @default.
- W4225303670 cites W3128001298 @default.
- W4225303670 cites W3133226796 @default.
- W4225303670 cites W3136933888 @default.
- W4225303670 cites W3138114698 @default.
- W4225303670 cites W3138414983 @default.
- W4225303670 cites W3153647143 @default.
- W4225303670 cites W3169219395 @default.
- W4225303670 cites W3172278206 @default.
- W4225303670 cites W3184865800 @default.
- W4225303670 cites W3185961698 @default.
- W4225303670 cites W3195609145 @default.
- W4225303670 cites W3200759624 @default.
- W4225303670 cites W3200840849 @default.
- W4225303670 cites W3209414850 @default.
- W4225303670 cites W4210703609 @default.
- W4225303670 cites W4221002918 @default.
- W4225303670 doi "https://doi.org/10.3389/fdgth.2022.765406" @default.
- W4225303670 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35592460" @default.
- W4225303670 hasPublicationYear "2022" @default.
- W4225303670 type Work @default.
- W4225303670 citedByCount "4" @default.
- W4225303670 countsByYear W42253036702022 @default.
- W4225303670 countsByYear W42253036702023 @default.
- W4225303670 crossrefType "journal-article" @default.
- W4225303670 hasAuthorship W4225303670A5007833845 @default.
- W4225303670 hasAuthorship W4225303670A5032766037 @default.
- W4225303670 hasBestOaLocation W42253036701 @default.
- W4225303670 hasConcept C111472728 @default.
- W4225303670 hasConcept C124101348 @default.
- W4225303670 hasConcept C138885662 @default.
- W4225303670 hasConcept C142724271 @default.
- W4225303670 hasConcept C151730666 @default.
- W4225303670 hasConcept C154945302 @default.
- W4225303670 hasConcept C157170001 @default.
- W4225303670 hasConcept C160735492 @default.
- W4225303670 hasConcept C17744445 @default.
- W4225303670 hasConcept C199539241 @default.
- W4225303670 hasConcept C202444582 @default.
- W4225303670 hasConcept C2522767166 @default.
- W4225303670 hasConcept C2779134260 @default.
- W4225303670 hasConcept C2779343474 @default.
- W4225303670 hasConcept C2779530757 @default.
- W4225303670 hasConcept C3008058167 @default.
- W4225303670 hasConcept C33923547 @default.
- W4225303670 hasConcept C41008148 @default.
- W4225303670 hasConcept C524204448 @default.
- W4225303670 hasConcept C71924100 @default.